Физико-химическое обоснование режимов электрохимического полирования медиРефераты >> Технология >> Физико-химическое обоснование режимов электрохимического полирования меди
Рис 4.1
Вследствие неравномерной изоляции поверхности анода происходит и неравномерное распределение электрического тока на ней. На выступах устанавливается более высокая плотность, чем на впадинах. Поэтому выступы растворяются более интенсивно, что в конечном счёте ведёт к выравниванию шероховатой поверхности.
Согласно другому мнению, главную роль при ЭХП играет диффузия продуктов анодного растворения от поверхности электрода в общую массу электролита. Ввиду того, что градиент концентрации продуктов анодного растворения.
При помощи этих теорий трудно объяснить ЭХП при сильном искусственном перемешивании или когда процесс сопровождается сильным газовыделением на аноде и катоде.
Образование у поверхности анода жидкого слоя, отличного по своему составу и свойствам от электролита в объёме, а также диффузионные и конвекционные процессы наблюдаются во всех других случаях анодного растворения металлов независимо от того, происходит ли при этом ЭХП или неравномерное травление поверхности.
Неравномерное распределение тока на поверхности анода наблюдается в отсутствие каких бы то ни было плёнок. Силовые линии электрического поля в электролите концентрируются по направлению к углам, рёбрам и выступам к поверхности электрода. Известно, что гальванические осадки имеют большую толщину именно в этих участках.
С термодинамической точки зрения следует считать более вероятным переход ионов металла в раствор с выступов, так как на этих участках работа выхода иона из твёрдой фазы в жидкую меньше, чем в углублениях. Сточки зрения простых геометрических соображений следует также ожидать преимущественное растворение пиков и, следовательно, выравнивание поверхности.
На практике часто встречаются случаи, когда анодное растворение ухудшает микрогеометрию поверхности металла за счёт локального неравномерного травления (образование питтингов и язв). Следовательно, основную роль при ЭХП играют не микрогеометрические характеристики поверхности, а её электрохимические характеристики, состав электролита и условия анодной поляризации. ЭХ характеристики поверхности металла определяются совокупностью всех свойств, оказывающих влияние на характер анодного растворения (кристаллическая структура, соотношение площадей анодных и катодных участков и характер их распределения, поверхностные пленки и их природа, неметаллические включения).
Выравнивание поверхности металла происходит потому, что градиент концентрации акцептора в диффузионном слое на выступах шероховатой поверхности больше, чем во впадинах, вследствие чего выступы более интенсивно растворяются. Выявление кристаллической структуры (травление) не будет наблюдаться в том случае, когда концентрация акцептора на поверхности анода станет равной нулю.
Г.С. Воздвиженский рассматривает анодное растворение металлов как процесс «электродекристаллизации», зависящей от текстуры поверхности металла. Анодное растворение металла локализуется на отдельных участках (несовершенные грани, места достройки кристалла) поверхности, находящихся в особо выгодном в энергетическом отношении условиях.
Основные положения данной теории сводятся к следующему:
1) при ЭХП растворяются в первую очередь все несовершенные элементы кристаллической решётки поверхностного слоя металла;
2) ЭХП сопровождается образованием фигур анодного травления, выявлением микроструктуры и, следовательно, микрошероховатости;
3) характер электродекристаллизационного процесса определяется текстурой поверхности металла;
4) основное внимание должно быть уделено изучению условий анодного растворения отдельных структурных элементов поверхности металла и разряда анионов на них с учётом того, что стационарные электродные потенциалы и поляризованные характеристики отдельных граней различны.
Несмотря на правильность основных положений, теория Г.С. Воздвиженского страдает односторонностью, та как принимается в расчёт лишь влияние текстуры на процесс анодного растворения металла при ЭХП. При оптимальном режиме полирования создаются условия, обеспечивающие равномерное растворение поверхностного слоя металла несмотря на ЭХ гетерогенность поверхности. Следовательно, текстура металла играет подчинённую роль при ЭХП.
Л.И. Левин считает, что эффект выравнивания поверхности при ЭХП объясняется тем, что на пиках шероховатой поверхности концентрируются силовые линии тока, в результате чего происходит изменение поверхностного натяжения плёнок на пиках, разрыв этих плёнок и, следовательно, более интенсивное растворение пиков. Это положение справедливо, но механизм процесса ЭХП этим не исчерпывается. Известно, что при любых анодных процессах имеет место концентрация силовых линий тока на пиках поверхности, но всегда при этом наблюдается ЭХП.
К.П. Баташев предполагает, что выравнивание поверхности медного анода при ЭХП в H3PO4 обусловлено исчерпанием химической активности электролита во впадинах. Благодаря замедлению процесса диффузии, насыщение прианодного слоя во впадинах достигается быстрее, чем над выступами, вследствие чего и происходит преимущественно растворение последних.
В другой работе К.П. Баташев высказывает мнение о том, что основным процессом, определяющим течение ЭХП, является разряд анионов на выступах анода, идущий одновременно с растворением выступов. В результате разряда аниона происходит разрушение прианодного слоя у выступа с одновременным изменением состояния поверхности последнего. Оба эти явления обеспечивают поддержание на выступах анода большей плотности тока до тех пор, пока эти выступы не исчезнут за счёт растворения. Нельзя считать правильным то, что основным процессом, определяющим течение ЭХП, является разряд анионов на выступах анода, идущий одновременно с растворением выступов.
Согласно представлениям других авторов, процесс ЭХП сопровождается образованием пассивных плёнок на аноде.
4.2 СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ
Механизм процесса ЭХП может быть правильно объяснён на основе современных представлений об анодной пассивности.
В реальных условиях ЭХП концентрация ионов металла у анода не может расти беспредельно, так как она лимитируется произведением растворимости соли металла. Концентрация продуктов анодного растворения у поверхности полируемого образца увеличивается по мере повышения анодной плотности тока, и в конечном счёте могут быть достигнуты условия для достижения анодной пассивности.
Если оксидная плёнка обладает ионной проводимостью, то наряду с ЭХ окислением может идти процесс перехода ионов металла в раствор и процесс выделения газообразного кислорода. При наличии только электронной проводимости у оксидной плёнки, очевидно, процесс ионизации металла будет практически заторможен, но на плёнке могут протекать процессы, связанные с прохождением через неё электронов, например разряд гидроксильных ионов.
В отсутствие заметного химического воздействия электролита на образующуюся неэлектропроводную плёнку электрод в ЭХ отношении становится инертным, и на нём уже не могут протекать какие-либо анодные процессы.