Электродуговая и газопламенная сварка
Рефераты >> Технология >> Электродуговая и газопламенная сварка

Горелка прямого действия. Дуга, горящая между неплавящимся вольфрамовым электродом б (рис. 8) и деталью 1, подключенной к аноду, сжимается узким каналом водоохлаждаеомого сопла 2 и плазмообразующим газом, поступающим в про­странство 5. Часть газа, проходя через столб сжатой дуги, ионизи­руется и выходит из сопла в виде плазменной струи. Температура плазменной струи, образующейся в горелке прямого действия, может достигать более 30 000°С. Такую схему применяют при резке металлов и других операциях, требующих повышенного нагрева детали.

Горелка косвенного действия. Дуга горит между неплавящимся электродом 6 (рис. 8, б) и водоохлаждаемым соплом 2. Нагретый и в значительной степени ионизированный газовый поток выходит из сопла в виде яркого факела пламени температурой до 16 000°С. Здесь большая часть энергии расходу­ется на нагрев газового потока, но интенсивность его теплового воздействия ниже, так как с возрастанием тока увеличиваются поверхность столба свободной дуги и теплопередача в окружаю­щую среду. Схему косвенного действия дуги применяют для поверх­ностной закалки, металлизации и напыления тугоплавких металлов и соединений.

Горелка комбинированного действия. Горят две дуги — между неплавящимся вольфрамовым электродом и водоохлаждаемым каналом и между тем же электродом и деталью. Эта схема получила распространение при наплавке деталей порошком, вдуваемым в струю плазмы. Выпускаемые горелки могут работать по любой из описанных трех схем.

В горелках прямого действия затруднено возбуждение дуги между электродом и деталью через узкий канал сопла. Поэтому в таких случаях при помощи осциллятора или угольного стержня возбуждают вспомогательную (дежурную) дугу между электродом и соплом (рис. 8, а), которая питается через ограничивающее сопротивление R от того же источника 4, что и основная дуга. Как только разогретая вспомогательная дуга коснется детали, автоматически загорается основная дуга и выключается вспомогательная.

Истечение плазменной струи из сопла с высокой скоростью увеличивает приток газов из окружающего воздуха в зону сварки, и поэтому горелки снабжают газозащитными соплами 3. Кроме того, их применяют для вторичного обжатия засоплового участка плазменной струи, а иногда и для фокусирования струи (рис. 8, в). Такие горелки называют микроплазменными, так как они позволяют получить остроконечную дугу в области малых токов порядка 0,5…30 А.

Характерные особенности плазменной струи — высокая темпера­тура факела; возможность концентрации большой тепловой мощ­ности на небольших объемах материалов; пригодность для плавле­ния и даже испарения практически любых материалов, встречающихся в природе; меньшая, чем при других видах наплавки, зона термического влияния и возможность получения наплавленного слоя толщиной от 0,10 мм до нескольких миллиметров.

Применение различных электрических схем для образования плазменной струи позволяет использовать разные присадочные материалы (проволоку, прутки, порошки и т.д.), в широком диа­пазоне раздельно регулировать плавление присадочного и основ­ного материала, получать наплавленные слои различных матери­алов с минимальной глубиной проплавления. Получены хорошие результаты наплавки бронзы, меди и латуни на сталь. Содержание в слоях железа не превышает 0,5%. На малоуглеродистые и низко­легированные стали наплавляют любые износостойкие материалы с минимальными примесями основного металла.

Как показывает практика, при помощи плазменной струи, кроме нанесения покрытий, выполняют сварку, резку и точение металлов, а также проводят металлургические процессы плазменнным нагревом.

Рис. 8. Схемы плазменных горелок:

а — прямого действия; б — косвенного действия; в — микроплазменной; 1 — деталь; 2 — водоохлаждаемое сопло; 3 — газозащитное сопло; 4 — источник питания; 5 — камера для плазмообразующего газа; 6 — электрод; 7 — фокусирующее сопло.

5.2.Плазмообразующие газы, электроды и присадочные материалы

В качестве плазмообразующего газа используют аргон, азот, гелий и др. Лучшим считается аргон, а наиболее дешевым — азот. Для защиты зоны наплавки применяют эти же газы, их смеси, а также углекислый газ.

В качестве неплавящегося электрода в горелках всех типов используют вольфрамовые стержни. Более стойкие — вольфрамовые стержни с присадкой 1 .2% оксида лантана.

Наплавочными материалами могут быть проволоки и металли­ческие порошки всех видов. Свойство плазменной струи, позволя­ющее получать тонкие наплавленные слои с минимальным про-плавлением основного металла, то есть минимальным перемешива­нием с основным металлом, и хорошее качество поверхности, дает возможность применять дорогие, но износостойкие материалы. Минимальный припуск на механическую обработку (после наплав­ки сразу шлифовка) значительно сокращает потери материала. Поэтому при плазменной наплавке успешно применяют дорого­стоящие порошки на никелевой основе ПГ-СР2, ПГ-СРЗ, ПГ-СР4, твердосплавные порошки на железной основе ПГ-ФБХ-6-2, КБХ, ПГ-УС25 и другие, а также смеси различных порошков.

5.3.Оборудование для плазменной наплавки

Оборудование для плазменной наплавкивключает в себя ис­точник питания током, плазменную горелку, пульт управления и контроля, балластные реостаты, дроссель, механизм для подачи порошка или проволоки, системы циркуляции воды, баллоны с плазмообразующим и защитным газами и станок для перемещения детали и плазменной горелки.

Источники питания. В качестве источников питания током используют специальные полупроводниковые выпрямители типа ИПН-100/600, а также сварочные преобразователи постоянного тока и выпрямители с напряжением холостого хода не ниже 120 В и крутопадающей характеристикой. Для регулирования тока используют балластные реостаты типа РБ-300.

Рис. 9. Плазменная горелка и схема наплавки прутками

твердых сплавов или проволокой:

1— пруток (проволока); 2 — защитное сопло; 3 — рабочее сопло;

4 — вольфра­мовый электрод; 5 — каналы подвода воды

и тока; 6 — канал для защитного газа.

Плазменные горелки. Конструкция плазменных горелок во многом зависит от их назначения и схемы плазмообразования. На рисунке 9 показана горелка для наплавки

прутками твердых сплавов. Горелка при наплавке перемещается впереди прутка. Сварочная ванна защищается аргоном, подавае­мым через канал 6.

Вместо литых прутков 1 можно применять для наплавки раз­личные сварочные проволоки. Режим наплавки подбирают опытным путем. Например, при наплавке сателлитов выдерживается такой режим: ток дежурной (закрытой) дуги 15 .20 А, ток основной дуги 120 .130 А, напряжение дуги 40 .45 В, расход плазмообразующего и защитного газа (аргона) 8 .10 дм3/мин, диаметр вольфра­мового электрода 3 мм и диаметр сопла 8 мм. При наплавке деталей с использованием порошков применяют горелки другого конструктивного исполнения.


Страница: