Техническое зрение роботовРефераты >> Технология >> Техническое зрение роботов
Данную задачу можно решить по-другому, применяя подход, предложенный Хоугом и называемый преобразованием Хоуга. Рассмотрим точку (хi yi) и общее уравнение прямой линии у:= аxi + bi. Имеется бесконечное число линий, проходящих через точку (хi yi), но все они удовлетворяют уравнению у:= аxi + bi при различных значениях а и b. Однако, если мы запишем это уравнение в виде b = -хi а + yi и рассмотрим плоскость аb (пространство параметров), тогда мы имеем уравнение одной линии для фиксированной пары чисел (хi yi). Более того, вторая точка (хj, уj) также имеет в пространстве параметров связанную с ней линию, которая пересекает другую линию, связанную с точкой (хi yi) в точке (а', b’), где значения а' и b’—параметры линии, на которой расположены точки (хi yi) и (хj, уj) в плоскости ху. Фактически все точки, расположенные на этой линии, в пространстве параметров будут иметь линии пересечения в точке (а', b’).
Вычислительная привлекательность преобразования Хоуга заключается в разделении пространства параметров на так называемые собирающие элементы , где (aмакс, амин) и (bмакс, bмин)—допустимые величины параметров линий. Собирающий элемент A (i, j) соответствует площади, связанной с координатами пространства параметров (аi, bj). Вначале эти элементы считаются равными нулю. Тогда для каждой точки (xk, уk) в плоскости образа мы полагаем параметр а равным каждому из допустимых значений на оси а и вычисляем соответствующее b, используя уравнение b = -хk + yk Полученное значение b затем округляется до ближайшего допустимого значения на оси b. Если выбор aр приводит к вычислению bq, мы полагаем А(р, q) ==А(р, q) + 1. После завершения этой процедуры значение М в элементе A (i, j) соответствует М точкам в плоскости xy, лежащим на линии y=aix+b. Точность расположения этих точек на одной прямой зависит от числа разбиений плоскости аb. Отметим, что, если мы разбиваем ось а на К частей, тогда для каждой точки (xk, уk) мы получаем К значений b, соответствующих К возможным значениям а. Поскольку имеется п точек образа, процесс состоит из пК вычислительных операций. Поэтому приведенная выше процедура линейна относительно п и имеет меньшее число вычислительных операций, чем процедура, описанная выше, если К<= п.
Проблема, связанная с представлением прямой линии уравнением у = ах + b, состоит в том, что оба параметра а и b стремятся к бесконечности, если линия принимает вертикальное положение. Для устранения этой трудности используется нормальное представление прямой линии в виде
xcosq+ysinq=b.
Это представление для построения таблицы собирающих элементов используется так же, как метод, изложенный выше, но вместо прямых линий мы имеем синусоидальные кривые в плоскости qr. Как и прежде, М точек, лежащих на прямой xcosqi+уsinqi == ri, соответствуют М синусоидальным кривым, которые пересекаются в точке (qi, ri) пространства параметров. Если используется метод возрастания q и нахождения для него соответствующего r, процедура дает М точек в собирающий элемент А (i, j), связанный с точкой (qi, ri).
2.1.3.Глобальный анализ с помощью методов теории графов.
Изложенные выше методы основаны на задании последовательности точек контура, полученных в результате градиентного преобразования. Этот метод редко применяется для предварительной обработки данных в ситуациях, характеризуемых высоким уровнем шума, вследствие того, что градиент является производной и усиливает колебания интенсивности. Рассмотрим глобальный подход, основанный на представлении сегментов контура в виде графа и поиске на графе пути наименьшей стоимости, который соответствует значимым контурам. Этот подход представляет приближенный метод, эффективный при наличии шума. Как и следует ожидать, эта процедура значительно сложнее и требует больше времени обработки, чем методы, изложенные выше.
Сначала дадим несколько простых определений. Граф G = (N, А) представляет собой конечное, непустое множество вершин N вместе с множеством А неупорядоченных пар различных элементов из N. Каждая пара из А называется дугой.
Граф, в котором дуги являются направленными, называется направленным графом. Если дуга выходит из вершины ni, к вершине пj, тогда пj называется преемником вершины ni. В этом случае вершина ni называется предшественником вершины пj. Процесс идентификации преемников каждой вершины называется расширением этой вершины. В каждом графе определяются уровни таким образом, чтобы нулевой уровень состоял из единственной вершины, называемой начальной, а последний уровень—из вершин, называемых целевыми. Каждой дуге (ni пj) приписывается стоимость c(ni пj). Последовательность вершин п1, n2, ., nk, где каждая вершина ni является преемником вершины ri-1, называется путем от ni к пk, а стоимость пути определяется формулой
.
Элемент контура мы определим как границу между двумя пикселами р и q. В данном контексте под контуром понимается последовательность элементов контура.
2.2.Определение порогового уровня
Понятие порогового уровня (порога) тест вида
Т = Т [х, у, р (х, у), f (х, у)],
где f(x, у) —интенсивность в точке (х, у), р(х, у)—некоторое локальное свойство, определяемое в окрестности этой точки. Пороговое изображение дается следующим выражением:
так что пикселы в g(x, у), имеющие значение 1, соответствуют объектам, а пикселы, имеющие значение 0, соответствуют фону. В уравнении предполагается, что интенсивность объектов больше интенсивности фона. Противоположное условие получается путем изменения знаков в неравенствах.
2.2.1.Глобальные и локальные пороги.
Если значение Т в уравнении зависит только от f(x, у), то, порог называется глобальным. Если значение Т зависит как от f(x, у), так и от р(х, у), порог называется локальным. Если, кроме того, Т зависит от пространственных координат х а у, в этом случае он называется динамическим порогом.
Глобальные пороги применяются в ситуациях, когда имеется явное различие между объектами и фоном и где освещенность достаточно однородна. Методы обратной и структурированной освещенности, обычно дают изображения, которые могут быть сегментированы путем применения глобальных порогов. Но, как правило, произвольное освещение рабочего пространства приводит к изображениям, которые, если исходить из определения порогового уровня, требуют локального анализа для компенсации таких эффектов, как неоднородность освещения, тени и отражение.
Ниже мы рассмотрим ряд методов для выбора порогов, используемых при сегментации. Хотя некоторые из них могут применяться для выбора глобального порога, они обычно используются в ситуациях, требующих анализа локального порога.
2.2.2.Выбор оптимального порога.
Часто рассматривают гистограмму, состоящую из суммы значений функции плотности вероятности. В случае бимодальной гистограммы аппроксимирующая ее функция дается уравнением