Материалы с памятью формыРефераты >> Технология >> Материалы с памятью формы
Особенности пористых сплавов никелида титана.
Наличие широкой температурной области мартенситного превращения в пористом никелиде титана по сравнению с литым находит отражение на температурных кривых электросопротивления. Показано, что мартенситный переход является неполным в пористых сплавах и проходит в более широком температурном интервале, чем в литых сплавах. Таким образом, важной особенностью пористого никелида титана по сравнению с беспористым (литым) сплавом того же состава является широкий температурный интервал фазовых превращений. Он составляет примерно 250 0 C, т. е. значительно превышает интервал (30-400С) превращений литого сплава. Увеличение температурного интервала фазовых превращений обусловлено структурой пористого никелида титана. Существенным является также размерный фактор, поскольку мартенситное превращение в тонких перемычках и массивных областях проявляются по разному. Действие этих факторов приводит к тому, что фазовые превращения в пористых материалах на основе никелида титана начинаются в различных областях при разных температурах, вытягивая гистерезис вдоль оси температур, соответственно расширяя температурные интервалы превращений и интервалы проявления эффектов памяти формы и сверхэластичности в пористых сплавах на основе никелида титана.
Рис.1 Температурные зависимости эффекта обратимой памяти и предела текучести в пористом (1) и литом (2) сплавах на основе никелида титана.
На рис.1 представлен эффект памяти формы в пористом и литом сплавах. В пористом сплаве эффект памяти формы проявляется в более широком температурном интервале, чем в литом, и остаточная пластическая деформация в пористом материале имеет более значительную величину (на рис.1), чем в литом. В литом никелиде титана происходит практически полное (до 100%) восстановление формы после деформирования на 6 - 8% и последующего нагрева выше температурного интервала МП (рис.1). При увеличении степени деформации литого никелида титана образуются дислокационные дефекты, которые в отличие от мартенситных превращений необратимы. Стадия обратимой деформации по мартенситному механизму сменяется стадией необратимой пластической деформации. Даже при малых нагрузках возникают участки, в которых величина упругой деформации превышает предельную. В противоположность в пористых сплавах даже при минимальных деформациях степень восстановления формы не превышает 85%. Степень восстановления формы зависит от пористости, распределения пор по размерам, уровня напряжений мартенситного сдвига, т.е. связана с особенностями деформирования пористых тел. Анализ деформационных зависимостей никелида титана с различной пористостью показывает, что предел текучести сплава уменьшается с увеличением пористости.
Области применения.
Немедицинское применение.
Впервые сплав с памятью формы был применен в самолете F-14 в 1971 году, это был Ni-Ti-Fe. Использование Ni-Ti-Nb сплава стало большим достижением, но также и Fe-Mn-Si сплавы получили много внимания, несмотря на их более низкое восстанавливаемое напряжение.
Имеются потенциальные возможности применения нитинола при производстве товаров широкого потребления. Например, интересное изобретение: устройство - держатель пепельницы, который опускает горящую сигарету в пепельницу, предотвращая ее попадание, предположим, на скатерть стола.
Надежность устройств с памятью формы зависит от их срока службы. Важные внешние параметры управления рабочими циклами системы, являются - время, температура. Важные внутренние параметры, которые определяют физические и механические свойства: система сплава, состав сплава, тип преобразования и дефекты решетки. Эти параметры управляют термомеханической историей сплава. Как следствие, максимальный эффект памяти будет ограничен в зависимости от требуемого количества циклов.
Полезные космические грузы типа солнечных батарей или антенн спутников сейчас используют в основном пиротехнические способы раскрытия, которые создают множество проблем. Использование материалов с памятью формы позволит устранить все эти проблемы, также предоставит возможность неоднократно проверить работоспособность системы еще на земле.
Недавнее исследование относительно Ni-Ti сплавов показало, что супер эластичное поведение приводит к повышению износостойкости. Псевдоэластичное поведение уменьшает область упругого контакта во время скольжения. Уменьшение области упругого контакта между двумя скользящими частями увеличивает износостойкость материала. Специальный тип износа - кавитационная эрозия, которая создает специфические проблемы в гидравлических машинах, винтах судов, водяных турбинах. Сравнительные изучения различных материалов показали, что Ni-Ti сплавы имеют более высокое сопротивление кавитационной эрозии, чем обычные сплавы. В мартенситном состояние у Ni-Ti сплава очень хорошая стойкость к кавитационной эрозии. Но изготовление рабочих частей подвергающихся коррозии полностью из Ni-Ti сплава слишком дорогое удовольствие, поэтому оптимальный путь - использование Ni-Ti сплава соединенного со сталью.
Медицинское применение.
В медицине используется новый класс композиционных материалов ”биокерамика–никелид титана”. В таких композитах одна составляющая (никелид титана) обладает сверхэластичностью и памятью формы, а другая — сохраняет свойства биокерамики.
В качестве керамической составляющей может выступать фарфор, который широко используется в ортопедической стоматологии и является хрупким материалом. Высокая хрупкость фарфора обусловлена тем, что на границах различных фаз и зерен возникают контактные напряжения, значительно превосходящие уровень средних приложенных напряжений. Релаксация контактных напряжений в керамическом материале возможна, если в зоне этих напряжений происходит диссипация энергии за счет фазового превращения в никелиде титана. Изменение температуры или приложение нагрузки вызывает в никелиде титана мартенситное превращение, что приводит к эффективной релаксации напряжений в матрице при нагружении композиционного материала, позволяя твердой составляющей нести приложенную нагрузку. Известно, что упругое восстановление объема пористых прессовок из порошка сверхупругого никелида титана связано с разрывом межчастичных контактов и определяется прочностью брикета, которая зависит от пористости и величины сил контактного сцепления. Ослабление этих сил путем добавления к порошку никелида титана других компонентов, например мелкодисперсных вольфрама или карбида кремния, значительно повышает упругий эффект, так как прочные одноименные контакты титан–никель заменяются разноименными. Поскольку величина упругого эффекта снижается при уменьшении содержания никелида титана в прессовке, концентрационная зависимость упругого восстановления объема обычно является экстремальной. В композиционном материале ”фарфор–никелид титана” компоненты слабо взаимодействуют и после спекания контакты между керамической и металлической составляющей ослаблены. При нагружении они разрываются в первую очередь и упругое восстановление объема растет. В результате деформация является обратимой и композит проявляет свойства, подобные сверхэластичности. Биосовместимость композиционного материала ”стоматологический фарфор–никелид титана” изучалась гистологическим методом, оценивая реакцию тканей у крыс на имплантацию под кожу передней брюшной стенки образцов из композиционного материала и из фарфора. Характер тканевых реакций, их распространенность и особенности клеточных изменений в обоих случаях оказались однозначными. Таким образом, композиционные материалы ”биокерамика–никелид титана” являются биосовместимыми[11].