РадиопротекторыРефераты >> Технология >> Радиопротекторы
В настоящее время к обнаруженным веществам с такими свойствами относятся, например, металлокомплексы порфиринов. Изучено огромное количество веществ природного происхождения в качестве возможных противолучевых средств. Наиболее часто исследовались различные вытяжки из растений, микроорганизмов и другие биологические обьекты без выделения активных веществ, а порой и без контроля за чистотой препаратов. Для радиопрофилактики применялись сильнодействующие биологически активные вещества в малых концентрациях: яд змеи, пчелиный яд, бактериальные эндотоксины, горморны эстрогены.
Выраженным, статистически достоверным радиопрофилактическим действием как при кратковременном, так и при пролонгированном облучении (с малой мощностью дозы - 0.1 Гр/мин) обладает мелиттин (полипептид из пчелиного яда, сосотоящий из 26 аминокислотных остатков,М-2840). Бактериальный эндотоксин, выделенный из Salmonella typhi, смягчал пострадиационное поражение и в том случае, если вводился через 30 мин после окончания облучения. Защитное действие было обнаружено у полисахарида зимозана, выделенного из дрожжевых клеток, у полисахаридов, выделенных из бактерий Salmonella paratyphi и Proteus vulgaris.Наибольший статистически значимый эффект отмечен у эстрадиола по сравнению с метилтестостероном, диэтилстильбэктролом, дипропионатэстрадиолом.
В качестве противолучевых средств и препаратов, применяемых в комбинациях с эффективными радиопротекторами, часто используются продукты метаболизма: нуклеиновые кислоты, витамины, коферменты, углеводы, липоиды, флавоноиды, аминокислоты, промежуточные продукты обмена.
Неспецифическое радиозащитное действие оказывает внутрибрюшинное введение 1,5 мл кипяченого коровьего молока за 1-2 сут. до тотального рентгеновского облучения. В других работах было выявлено радиопротективное действие парентерального введения цельной цитратной крови, экстракта крови солкосерила, бензольного экстракта клеток крови человека. Применение сывороточных глобулинов с нормальными аутоантителами перед облучением (или в лечебном варианте после него) повышало выживаемость мышей, морских свинок, крыс, кроликов, подвергнуых летальному g-облучению в дозах ЛД80-100/30.
К числу противолучевых препаратов пролонгированного действия относятся также природные адаптогены. В отличие от радиопротектов они обладают неспецифическим действием, повышая общую сопротивляемость организма к различным неблагоприятным факторам. Адаптогены проявляют радиозащитную способность если их вводить многократно за много дней до облучения в дозах, ниже летальных. Они эффективны при остром, но при пролонгированном или фракционированном облучениях дают наибольший эффект. Омечаются также отсутствие побочных эффектов при использовании радиозащитных доз адаптогенов. Наиболее эффективными препаратами этой группы являются экстракты жень-шеня, элеутерококка, китайского лимонника. Явное снижение чувствительности лабораторных животных обнаружено при введении перорально сухого экстракта гречихи, а также при блокаде ритикулоэндотелиальной системы с пормощью частиц угля, полестерола, латекса или гликогена. Однако в целом механизм радиозащитного действия адаптогенов на организм пока не выяснен. Некотрые авторы к адаптогенам причисляют АТФ и АДФ, аденин нуклеотиды, что связано с их нормализующим влиянием на энергетический и генетический аппараты клеток. Установлено, что многократное 20-суточное внутримышечное введение витамина С повышало радиорезистентность лягушек, голубей, мышей. Было замечено также, что на радиорезистентность лабораторных животных благотворное влияние оказывает рациональное питание, что открывает перспективы эффетивной длительной защиты организма от летального воздействия ионизирующего излучения.
ОСНОВНЫЕ МЕТОДЫ ОЦЕНКИ ЭФФЕКТИВНОСТИ РАДИОПРОТЕКТОРОВ
Более 20 лет в радиобиологии существует термин “идеальный радиопротектор”, но его содержание постоянно обновлялось и обогащалось.
Считается, что основные критерии применимости радиопротекторов должны соответствовать их целевому назначению с учетом того, как они могут использоваться:
1) как средства индивидуальной химической защиты от внешнего воздействия ионизирующего излучения при сравнительно кратковременном облучении в дозах с бльшой мощьностью (например, при ядерных взрывах, солнечных вспышках);
2) для защиты от радиации при длительном облучении в дозах с малой мощностью (например, при прохождении радиактивного облака, при длительных космических полетах);
3) в качестве средств, повышающих устойчивость организма к радиации при рентгено- и радиотерапии.
Существуют различные способы оценки радиозащитной способности противолучевых средств. При этом можно использовать такие критерии как влияние радиации на продолжительность жизни и выживаемость.
Выживаемость животных - наиболее простой способ определения защитной способности препарата. Обычно о защитной способности судят по разности между выживаемостью в течение месяцев после облучения в опыте и в контроле (в процентах), либо по отношению этих показателей (индекс эффекта). Наиболее четкие результаты наблюдаются, как правило, при дозе, равной или превышающей величину ЛД100. В этом случае, когда доза излучения ниже, и в контроле погибают не все животные, а протектор характеризуется 100%-ой эффективностью, разность между опытом и контролем уменьшается и, следовательно, данные о защитной способности протектора будут занижены.
ФИД или ФУД - фактор изменения (уменьшения) дозы определяется по отношению равноэффективных (по поражающему действию) доз излучения в опыте и контроле. Это отражает общепринятое представление, согласно которому протектор как бы снижает величину поглощенной дозы радиации. Иными словами, реакция предварительно защищенных и затем облученных животных (клеток) слабее, как если бы они получили меньшую, чем в контроле, дозу. Для определения величины ФУД большое значение имеет выбор доз, для млекопитающих чаще всего используют отношение ЛД50/30 в контороле:
При оценке противолучевой эффективности препаратов облучение животных с протектором (опыт) и без него (контроль) необходимо производить одновременно. Это диктуется необходимостью строгого соблюдения правил облучения и дозиметрии. По количественному критерию выживаемости ФУД учитывают действие различных доз излучения.
Для практической применимости препарата необходимо сопоставление защитных и летальных доз. Такое сопоставление включает в себя “терапевтический индекс”, “терапевтическую широту”, “протекторный индекс”.
П.Эрлих определил терапевтический индекс как отношение минимально активной дозы к максимально переносимой. Позднее вместо них стали использовать полулетальную дозу и дозу, излечивающую 50% животных. В применении к радиопротекторам Д.Томсон определил терапевтический индекс (Т.И.) как отношение полулетальной дозы к эффективной (в защитном отношении) дозе: