Расчет редуктора
Рефераты >> Технология >> Расчет редуктора

[tk] = 15H/мм2

принимаем диаметр под шестерней dк3=45 мм, найдем диаметр под колесом:

принимаем диаметр под подшипники dn3=35 мм.

Ведомый вал.

Рассчитываем при [t]k =25H/мм2 диаметр выходного конца вала

Принимаем диаметр подшипниками dn4 =55 мм, под колесом dk4 =60 мм, dl4=60мм.

5 Уточненный расчет вала

Уточненный расчет проведем для промежуточного вала. Составим расчетную схему. Все размеры возьмем из компановки: а=50мм; b=35мм.

РрадС=1,208×103Н

РосС=894Н

РокрС=3212,7Н

РрадВ,Д=505,8Н

РосВ,Д=382,1Н

РокрВ,Д=1,336×103Н

Построем по эпюру крутящих моментов:

Определим реакции в опорах:

В плоскости YOZ:

åM3=0;

åM3=-PрадВ×а+

+РрадС(а+b)-

-PрадД(2b+a)+Y3×

×(a+b+b+a)=0

Истинное значение силы Y4 направленно в противоположную сторону, от выбранного на схеме.

åМ4=0;

åМ4=-РрадД×а+РрадС×(а+b)-РрадВ×(а+b+b)+Y3×(a+b+b+a)=0;

Истинное значение силы Y3 направлено в противоположную сторону

от ранее выбранного направления.

Проверка:

åFy=0;

Строим эпюру изгибающих моментов в плоскости YOZ.

В плоскости XOZ:

Проверка :

2942.3+1.336∙103+3212.7+1.336∙103-2942.3=0;

MY3=0; MY4=0; MYB=-X3∙a=-147.1(H∙м)

MYC=-X3∙(a+b)-Pокрb∙b=-203.3 (H∙м)

MYД=-Х4∙а=-147,1(H∙м)

M∑И3=0; M∑И4=0;

Опасным сечением является сечение С:

Из условия прочности:

получим:

Принимаем d=45(мм)

6 Проверка долговечности подшипников

6.1 Ведущий вал.

Роликоподшипники радиальные с короткими цилиндрическими роликами, однорядные. Тип 7305, ГОСТ 333-79, средняя серия d = 25, D = 62, B = 17, c = 2, D1=67, Т =18.25, грузоподъемность = 2960, ролики DT = 9.5, z = 13;

6.2 Промежуточный вал.

Роликоподшипники радиальные с короткими цилиндрическими роликами, однорядные. Тип7307, ГОСТ 333-79, средняя серия d = 35, D = 80, B = 21, c=2.5, D1=85, Т =22.75, грузоподъемность = 6100, ролики DT = 11.7, z = 12;

6.3 Ведомый вал.

Роликоподшипники радиальные с короткими цилиндрическими роликами, однорядные. Тип 7311, ГОСТ 333-79, средняя серия d = 55, D = 120, B = 27, c= 3, D1=127, Т =31.5, грузоподъемность = 10200, ролики DT = 16.7, z = 13;

Силы, действующие в зацеплении: Pокр = 1336 H, Ррад = 506 H и Рос = 382 H.

Первый этап компоновки дал a = 50 мм, b = 35 мм

Определим реакции опор:

В плоскости yz

Y2 (2a + 2b) = Рокрa + Рокр (a + 2b) = Рокр(2a + 2b)

Y2 = Рокр = 1336 H.

Y1 (2a + 2b) = Рокр a + Рокр (a + 2b) = Рокр (2a + 2b)

Y1 = Рокр = 1336 H.

В плоскости yz

X2 (2a + 2b) = Ррад a + Ррад (a + 2b) = Ррад (2a + 2b)

X2 = Ррад = 506 H.

X1 (2a + 2b) = Ррад a + Ррад (a + 2b) = Ррад (2a + 2b)

X1 = Ррад = 1336 H.

Суммарные реакции

H

H

Находим осевые составляющие радиальных реакций конических подшипников по формуле:

S=0,83eR

S2 = 0,83eR2 = 0,83×0,36×1429 = 427 H;

S1=0,83eR1 = 0,83×0,36×1429 = 427 H;

здесь для подшипников 7305 параметр осевого нагружения е = 0,36, С = 33 кН.

Осевые силы подшипников. В нашем случае S1 = S2; Рос > 0;тогда Foc1 = S1 = 1429 H; Foc2 = S1 + Рос = 1811 H.

Так как реакции, действующие на подшипники равны, то рассмотрим один из подшипников. Рассмотрим левый подшипник.

Отношение , поэтому следует учитывать осевую нагрузку.

Эквивалентная нагрузка по формуле:

Pэ2 = (XVR2 + YFoc2) Kб Kт;

для заданных условий V = Kб = Kт = 1; для конических подшипников при коэффициент X = 0,4 и коэффициент Y = 1,67 (табл.9.18 и П7 Чернавский).

Эквивалентная нагрузка

Pэ2 = (0,4 1429 + 1,67 1811) = 3024 H = 3,024 kH

Расчетная долговечность

млн. об.

Расчетная долговечность

ч

где n = 720 об/мин – частота вращения ведущего вала.

Найденная долговечность приемлема.

7 Выбор смазки редуктора

Для уменьшения потерь мощности на трение и снижения интенсивности износа трущихся поверхностей, а также для предохранения их от заедания, задиров, коррозии и лучшего отвода теплоты трущиеся поверхности деталей должны иметь надежную смазку.

В настоящее время в машинострое­нии для смазывания передач широко применяют картерную систему. В кор­пус редуктора или- коробки передач

заливают масло так, чтобы венцы ко­лес были в него погружены. При их вращении масло увлекается зубьями, разбрызгивается, попадает на внут­ренние стенки корпуса, откуда стекает в нижнюю его часть. Внутри корпуса образуется взвесь частиц масла в воз­духе, которая покрывает поверхность расположенных внутри корпуса де­талей.

Картерную смазку применяют при окружной скорости зубчатых колес и червяков от 0,3 до 12,5 м/с. При бо­лее высоких скоростях масло сбрасы­вается с зубьев центробежной силой и зацепление работает при недостаточ­ной смазке. Кроме того, заметно уве­личиваются потери мощности на пере­мешивание масла и повышается его температура.

Выбор смазочного материала осно­ван на опыте эксплуатации машин. Принцип назначения сорта масла сле­дующий: чем выше окружная скорость колеса, тем меньше должна быть вяз­кость масла, чем выше контактные давления в зубьях, тем большей вяз­костью должно обладать масло. Поэто­му требуемую вязкость масла опреде­ляют в зависимости от контактного напряжения и окружной скорости ко­лес. Предварительно определяют окруж­ную скорость, затем по скорости и кон­тактным напряжениям находят требуемую кинематическую вязкость и марку масла.


Страница: