Высоковольтный элегазовый баковый выключатель ВГБ-35Рефераты >> Технология >> Высоковольтный элегазовый баковый выключатель ВГБ-35
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
ГЛАВА ПЕРВАЯ ТЕХНИКО-ЭКОНОМИЧЕСКАЯ ХАРАКТЕРИСТИКА ВГБ-35
1.1. ИСПОЛЬЗОВАНИЕ ЭЛЕГАЗА В ВЫСОКОВОЛЬТНЫХ ВЫКЛЮЧАТЕЛЯХ
1.2. ОБЩИЕ СВЕДЕНИЯ ЭЛЕГАЗОВЫХ ВЫКЛЮЧАТЕЛЕЙ
1.2.1. ТЕХНИЧЕСКИЕ ДАННЫЕ
1.2.2. ПРЕИМУЩЕСТВА
1.2.3. НЕДОСТАТКИ
1.3. ОБЩИЕ СВЕДЕНИЯ ЭЛЕГАЗОВОГО БАКОВОГО ВЫКЛЮЧАТЕЛЯ СЕРИИ ВГБ-35
1.4. СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ -
1.5. НАЗНАЧЕНИЕ И УСЛОВИЯ ЭКСПЛУАТАЦИИ
1.6. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ
1.7. ВОЗМОЖНОСТИ ВЫКЛЮЧАТЕЛЯ
1.8. УСТРОЙСТВО
1.9. РАБОТА
1.9.1. ОПЕРАЦИЯ "ВКЛЮЧЕНИЕ". -
1.9.2. ОПЕРАЦИЯ "ОТКЛЮЧЕНИЕ". -
ГЛАВА ВТОРАЯ РАСЧЁТ ЭЛЕКТРИЧЕСКОЙ ИЗОЛЯЦИИ
2.1. АЛГОРИТМ РАСЧЁТА
2.2. ОПРЕДЕЛЕНИЕ ФОРМЫ ИЗОЛЯЦИОННЫХ ПРОМЕЖУТКОВ
2.3. РАСЧЁТ ПРОМЕЖУТКОВ, ПОДВЕРГАЮЩИХСЯ ГРОЗОВЫМ ИМПУЛЬСАМ
2.4. РАСЧЁТ ПРОМЕЖУТКОВ, ПОДВЕРГАЕМЫХ ВОЗДЕЙСТВИЮ РАЗРЯДНОГО НАПРЯЖЕНИЯ ПРОМЫШЛЕННОЙ ЧАСТОТЫ …………… -
2.5. РАСЧЁТ ПРОМЕЖУТКОВ, ПОДВЕРГАЮЩИХСЯ КОММУТАЦИОННЫМ ИМПУЛЬСАМ
2.6. РАСЧЁТ ПРОМЕЖУТКОВ ВНУТРЕННЕЙ ИЗОЛЯЦИИ-
2.7. ПРОВЕРКА ИЗОЛЯЦИИ ПО ДЛИНЕ ПУТИ УТЕЧКИ
2.8. ИТОГОВЫЕ РЕЗУЛЬТАТЫ РАСЧЁТОВ ……………… -
ГЛАВА ТРЕТЬЯ РАСЧЁТ ТОКОВЕДУЩЕГО КОНТУРА
3.1. РАСЧЁТ ТОКОВЫХ ХАРАКТЕРИСТИК-
3.2. ПРОВЕРКА ТОКОВЕДУЩЕЙ СИСТЕМЫ ПО ТОКУ ТЕРМИЧЕСКОЙ СТОЙКОСТИ
3.3. ЭЛЕКТРОДИНАМИЧЕСКИЕ УСИЛИЯ В ТОКОВЕДУЩЕЙ СИСТЕМЕ-
3.4. ОПРЕДЕЛЕНИЕ ПОТЕРЬ МОЩНОСТИ В СИСТЕМЕ ПОДВИЖНЫХ КОНТАКТОВ
3.5. РАСЧЁТ НАГРЕВА ТОКОВЕДУЩИХ ЭЛЕМЕНТОВ В ЭЛЕГАЗЕ
3.6. ПОРЯДОК РАСЧЁТА ТОКОВЕДУЩИХ СИСТЕМ МЕТОДОМ ТЕПЛОВЫХ СХЕМ
3.7. ПОСТРОЕНИЕ ТЕПЛОВОЙ МОДЕЛИ ТОКОВЕДУЩЕЙ СИСТЕМЫ. -
3.8. ИСХОДНЫЕ ДАННЫЕ ДЛЯ МАШИННОГО РАСЧЁТА
3.9. РЕЗУЛЬТАТЫ ТЕПЛОВОГО РАСЧЁТА ……………… . -
ГЛАВА ЧЕТВЁРТАЯ РАСЧЁТ КОНТАКТНОГО УЗЛА
4.1. ТИП КОНТАКТНОЙ СИСТЕМЫ ВГБ-35-
4.2. РАСЧЁТ ПАРАМЕТРОВ КОНТАКТНОЙ СИСТЕМЫ ПРИ НОМИНАЛЬНОМ ТОКЕ
4.2.1. ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЁТА КОНТАКТНОГО НАЖАТИЯ
4.2.2. РАСЧЁТ КОНТАКТНОГО НАЖАТИЯ ПО ЭЛЛИПТИЧЕСКОЙ ФОРМУЛЕ
4.2.3. РАСЧЁТ КОНТАКТНОГО НАЖАТИЯ ПО СФЕРИЧЕСКОЙ ФОРМУЛЕ
4.2.4. РАСЧЁТ ПЕРЕХОДНОГО СОПРОТИВЛЕНИЯ КОНТАКТНОГО УЗЛА .…………. -
4.2.5. РАСЧЁТ ТЕПЛОВОГО ПОТОКА КОНТАКТНОЙ СИСТЕМЫ . -
4.3. РАСЧЁТ ПАРАМЕТРОВ КОНТАКТНОЙ СИСТЕМЫ ПРОГРАММОЙ "CONT"
4.3.1. ИСХОДНЫЕ ДАННЫЕ. -
4.3.2. РЕЗУЛЬТАТЫ РАСЧЁТА .………………… -
ГЛАВА ПЯТАЯ КИНЕМАТИЧЕСКАЯ СХЕМА И ПЛАНЫ СКОРОСТЕЙ
ГЛАВА ШЕСТАЯ СИСТЕМА ДУГОГАШЕНИЯ ВГБ-35
ГЛАВА СЕДЬМАЯ ПРАВИЛА МОНТАЖА И ОБСЛУЖИВАНИЯ
ЗАКЛЮЧЕНИЕ37
ПРИЛОЖЕНИЕ
СПЕЦИФИКАЦИЯ
БИБЛИОГРАФИЧЕСКИЙ СПИСОК .…………………
ВВЕДЕНИЕ
Выключатели высокого напряжения (ВК) предназначены для оперативных и аварийной коммутаций в энергосистемах, для выполнения операций включения и отключения отдельных цепей при ручном или автоматическом управлении. Во включенном положении ВК должен длительно пропускать токи нагрузки и кратковременно - аварийные.
Характер режима работы высоковольтных выключателей несколько необычен: нормальным для них считается как включенное положение, когда по ним проходит ток нагрузки, так и отключенное, при котором они обеспечивают необходимую электрическую изоляцию между разомкнутыми участками цепи.
Коммутация цепи, осуществляемая при переключении ВК из одного положения в другое, производится не регулярно, время от времени, а выполнение специфических требований по включению цепи при имеющемся в ней короткого замыкания (КЗ) либо по отключению КЗ вообще крайне редко.
Выключатели должны надёжно выполнять свои функции, находясь в любом из указанных положений, и одновременно быть всегда готовыми к мгновенному выполнению любых коммутационных операций, часто после длительного пребывания в неподвижном состоянии. Наиболее тяжёлым режимом для ВК является режим отключения тока КЗ.
Общие требования к конструкциям и характеристикам выключателей устанавливается стандартами: ГОСТ 687-78 «Выключатели переменного тока нагрузки на напряжение свыше 1000 В. Общие технические условия»; ГОСТ 18397--73 «Выключатели переменного тока на номинальное напряжение 6-220 кВ. Общие технические условия»; ГОСТ 12450-82 «Выключатели переменного тока высокого напряжения. Отключение ненагруженных линий». ГОСТ 8024-84 «Допустимые температуры нагрева токоведущих элементов, контактных соединений и контактов аппаратов и электротехнических устройств переменного тока на напряжение свыше 1000 В; ГОСТ 1516.1-75 «Нормы испытательных напряжений внешней и внутренней изоляции электрических аппаратов».
В связи с тем, что российская промышленность поставляет высоковольтные электрические аппараты для районов с различными климатическими условиями, объединение сетей и создание единой энергетической системы связано с повышением технических параметров и ужесточением требований, предъявляемых к электрическим аппаратам высокого напряжения. Эти задачи становятся трудноразрешимыми при использовании традиционных методов гашения дуги, изоляционных и дугогасительных сред. Широко применяемые в настоящее время масляные и воздушные ВК имеют и свои преимущества, и свои недостатки. Они объясняются свойствами сред, используемых в этих аппаратах для изоляции и гашения дуги. Масло таит опасность пожара и взрыва. Применение воздушных выключателей связано с необходимостью производства, кондиционирования и хранения сжатого воздуха. Затруднительна эксплуатация воздушных и масляных ВК при низких температурах. Естественно поэтому, что исследователи непрерывно ведут поиски новых принципов коммутации цепей и новых сред, которые сохраняли бы преимущества традиционных сред, но не имели бы их недостатков. С основных характеристик подобной среды и начинается первая глава.
ГЛАВА ПЕРВАЯ
ТЕХНИКО-ЭКОНОМИЧЕСКАЯ ХАРАКТЕРИСТИКА ВГБ-35
1.1. ИСПОЛЬЗОВАНИЕ ЭЛЕГАЗА
В ВЫСОКОВОЛЬТНЫХ ВЫКЛЮЧАТЕЛЯХ
Наиболее распространёнными изоляционными, дугогасительными и охлаждающими средами, которые применяются в электротехническом оборудовании, является минеральное масло и воздух. Газы по сравнению с маслом и твёрдыми изоляционными материалами имеют определённые преимущества, главные из которых - ничтожнейшая проводимость и практическое отсутствие диэлектрических потерь, независимость в однородном поле электрической прочности от частоты, неповреждённость газовой изоляции заметным остаточным изменениям и малая загрязнённость под действием дуги и короны.
Электрическая прочность газовой изоляции в однородных или слабо неоднородных полях увеличивается с ростом давления и при определённых условиях может превысить электрическую прочность трансформаторного масла, фарфора и высокого вакуума.