Расчет подкрановой балки
Рефераты >> Технология >> Расчет подкрановой балки

7.Вычисление геометрических характеристик скомпанованного сечения.

Положение центра тяжести подкрановой балки относительно оси, проходящей по наружной плоскости нижнего пояса

yв =

= 65.7 cм

Расстояние от нейтральной оси х – х до наиболее удаленного волокна верхнего пояса

yt = h – yb = 1278 – 657 = 621 мм = 62.1 мм

Момент инерции площади сечения брутто относительно оси х – х

Ix =

=

= 469 379 см4 ,

где а1 = yв – tf -- ; a2 = yt – ; a3 = yв –

Момент инерции ослабления сечения двумя отверстиями d0 = 25 мм для крепления рельса КР – 70

Ix0 = 2*d0*tf*( yt – = 2*2.5*1.4*(62.1 – 2 = 26 390 см4.

Момент инерции площади сечения нетто относительно оси х – х

Ix,nt = Ix – Ix0 = 469 379 – 26 390 = 442 989 см4

Моменты сопротивления для верхнего и нижнего поясов

Wft,x = 7 133 см3

Wfb,x = 6 743 см3

Cтатический момент полусечения для верхней части

Sx = Aft*(yt – + tw*

= 4 421 см3

Координат центра тяжести тормозной конструкции относительно центральной оси подкрановой балки у0 – у0

хс =

= 60 см,

где Ас = 18.1 см2 – площадь [ № 16, z0 = 1.8 см

Ash – площадь тормозного листа

Расстояние от нейтральной оси тормозной конструкции у – у до её наиболее удаленных волокон : xB = xc + 75 cм ха = ( b0 + li ) – (∆1 + xc ) = 50 + 100 – ( 10 +60 ) = 80 cм.

Момент инерции полщадь сечения тормозной балки брутто относительно оси у – у

где Ix , Ift и Ic – соответственно моменты инерции тормозного листа, верхнего пояса

балки и наружного швеллера .

Момент инерции площади ослабления

Iy0 = dc*tf*(xc – a)2 + d0*tf*(xc + a)2 = 2.5*1.4*(60 – 10)2 + 2.5*1.4*(60+10)2 =

= 25 900 cм4 , где а = 100 мм.

Момент инерции площади сечения нетто относительно у – у

Iy,nt = Iy – Iy0 = 383 539 – 25 900 = 357 639 cм4.

Момент сопротивления для крайнего волокна в верхнем поясе подкрановой балки

Wt,y = .

8.Проверка подобранного сечения на прочность.

Нормальные напряжения в верхнем поясе

кН/cм2 = 114 МПа < Ry*γc = 230 МПа

то же в нижнем поясе

кН/cм2 = 106 МПа < Ry*γc = 230 МПа.

Касательные напряжения на опоре

τ 2.52 кН/см2 = 25.2 МПа < Rs*γc = 138.6*1=138.6 МПа

то же без учета работы поясов

τ 3 кН/см2 = 30 МПа < Rs*γc = 138.6*1=138.6 МПа.

Условие прочности выполняется.

9.Проверка жесткости балки.

Относительный прогиб

Условие жесткости выполняется.

10.Проверка прочности стенки в сжатой зоне группы режима 7К.

Нормальные напряжения на границе стенки

кН/см2,

где y = yt – bft = 62.1 – 1.4 = 60.7 см .

Касательные напряжения

кН/см2

Сумма собственных моментов инерции пояса балки и кранового рельса КР – 70

см4,

где IR = 1082 см4 – момент инерции рельса КР – 70 .

Условная длина распределения давления колеса

= см.

Напряжения в стенке от местного давления колес крана

кН/см2

где γf = 1.3 – коэффициент увеличения вертикальной нагрузки на

отдельное колесо крана, принимаемый согласно п.4.8

СНиП 2.01.07 – 85 [1] для группы режима работы кранов 7К.

Местный крутящий момент

кН*см , где е = 15 мм – условный эксцентриситет смещения подкранового рельса с оси

балки ;

Qt = 0.1F1 – поперечная расчетная горизонтальная нагрузка, вызываемая

перекосами мостового крана ;

hR = 120 мм – высота кранового рельса КР – 70 ;

Сумма собственных моментов инерции кручния рельса и верхнего сжатого пояса балки

см4, где It=253 cм3 – момент инерции кручения кранового рельса КР – 70.

Напряжения от местного изгиба стенки

кН/см2

Локальные напрядения распорного воздействия от сосредоточенной силы под колесом крана

кН/см2 .

Местные касательные напряжения от сосредоточенного усилия

кН/см2 .

Местные касательные напряжения от изгиба стенки

кН/см2 .

Проверка прочности для сжатой зоны стенки подкрановой балки из стали с пределом текучести до 430 МПа для кранов группы режимов 7К согласно п.13.34 норм [3], выполняется с учетом всех компонент напряженного состояния по формулам (141…144) :

=

= =

= 10.02 кН/см2 = 100.2 МПа < β*Ry =1.15*240 = 276 МПа.


Страница: