Следящие системыРефераты >> Технология >> Следящие системы
Введение
Современные системы автоматического управления представляют собой сложные комплексы взаимодействующих технических устройств и элементов, работа которых основана на различных физических принципах. Различно также их конструктивное выполнение и технические характеристики.
Несмотря на многообразие отдельных систем автоматического управления и входящих в них элементов, последние могут быть сведены к нескольким основным типам, различающимся по их назначению и взаимодействию в системе управления.
САУ должна выполнять одновременно две задачи:
1) обеспечивать с требуемой точностью изменение выходной величины системы в соответствии с поступающей извне входной величиной, играющей роль команды. При этом необходимо преодолевать инерцию объекта управления и других элементов системы.
2) при заданном значении входной величины система должна, по возможности, нейтрализовать действие внешних возмущений, стремящихся отклонить выходную величину системы от предписываемого ей в данный момент значения.
Целью данной работы является создание САУ, которая бы удовлетворяла поставленным задачам.
Задание на курсовую работу № 34.
Jн, Нмс2 |
Мн, Нм |
Ωн max рад/с2 |
εн max рад/с2 |
δm, град |
γ, град |
Вид входного воздействия |
Критерий устойчивости |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
4*10-2 |
4 |
6 |
80 |
0,35 |
50 |
Плавное воздействие |
Михайлова |
В таблице использовались следующие обозначения:
Jн - момент инерции нагрузки
Мн - момент нагрузки
Ωн max - максимальная угловая скорость нагрузки
εн max - максимальное угловое ускорение нагрузки
δm - максимальная ошибка
γ - запас устойчивости системы по фазе
Содержание
1. Функциональная схема системы
2. Выбор и расчёт элементов системы
выбор двигателя
расчёт передаточного числа
редуктора
выбор типа усилителя
выбор датчика рассогласования
выбор и расчёт предварительного усилителя
3. Устойчивость разомкнутой системы
4. Литература
5. Приложения
Функциональная схема системы
Рассматриваемая следящая система относится к числу дистанционных систем, в которых сравнение сигналов управления и обработки производится путем суммирования электрических величин. Это повышает удобство пользования системой автоматического регулирования, так как задающее устройство можно расположить в удобном для пользователя месте, а также повышает надежность системы потому, что электронную часть САУ можно расположить вдали от ОУ, который обычно находится в жестких условиях.
Система работает следующим образом. Входная и выходная величины САУ сравниваются в измерителе рассогласования. Сигнал ошибки усиливается по напряжению в УН и по мощности в УМ, а затем подается на управляющую обмотку электродвигателя, который вращаясь стремиться уменьшить сигнал рассогласования. Для получения требуемой скорости вращения в схему включен редуктор.
Выбор исполнительного двигателя.
Мощность двигателя выбираем из условия обеспечения заданного режима работы объекта управления.
Исходными данными для выбора двигателя служат следующие параметры нагрузки: момент трения Мн, момент инерции Jн, угловая скорость Ωн и угловое ускорение Сн.
Выбор двигателя начнем с ориентировочного определения необходимой мощности на его валу, для чего можно воспользоваться формулой:
Jнεн + Мн) Ωн Вт
подставив численные значения величин, получим
Ртр=(4*10-2*80+4)*6=108 Вт
Так как требуемая мощность двигателя превышает 100 Вт то выбираем двигатель постоянного тока, который обладает хорошими регулировочными и механическими характеристиками, значительным пусковым моментом. К недостаткам двигателей постоянного тока можно отнести большой момент статического трения, искрение между коллектором и щетками, генерирование радиопомех.
Для нашей системы возьмем двигатель постоянного тока МИ-22, который имеет следующие основные характеристики:
Напряжение В |
Мощность на валу, кВт |
Ток якоря, А |
Скорость вращения об/мин |
Мощность возбуждения Вт |
Маховый момент, кг м2 |
Сопротивление якоря Ом |
Статический момент трения кг см |
Сопротивление обмотки возбуждения, Ом |
110 |
0,12 |
1,4 |
1000 |
16 |
0,016 |
4,58 |
1,5 |
790 |
Так как электродвигатель обладает значительной мощностью, то для обеспечения заданных значений напряжения и тока обмотки управления, в качестве усилителя мощности выбираем электромашинный усилитель - ЭМУ.
Расчет передаточного числа редуктора.
Из условия обеспечения точности воспроизведения заданного закона движения управляющей оси определим оптимальное передаточное число редуктора.
в формуле применяются следующие обозначения:
fдв - коэффициент внутреннего демпфирования двигателя;
Jдв - момент инерции двигателя с подключенным к нему редуктором.
Коэффициент демпфирования двигателя может быть найден из формулы:
fдв=, где
Се и См - конструктивные постоянные;
(Се - скоростной коэффициент; См - коэффициент пропорциональности между током якоря и вращающим моментом Мвр двигателя).
В системе СИ Се = См и поэтому: fдв=, где