Технологическая оснастка
Рефераты >> Технология >> Технологическая оснастка

Содержание.

1. Выбор способа базирования детали

2. Разработка принципиальной схемы приспособления

3. Расчет режимов резания

4. Расчет сил резания при фрезеровании

5. Расчет коэффициента надежности закрепления детали

6. Расчет сил зажима

7. Определение тягового усилия Q и параметров гидроцилиндра

8. Расчет точности обработки

9. Описание конструкции и работы приспособления

Литература

1. Выбор способа базирования детали

Ферма зажимного устройства сферична. При такой схеме базирования принимаю следующий вариант ее реализации (см. Рис. 2).

В качестве основной базы принимается основание подошвы связывающее 3 степени свободы: два вращения и движение детали вниз. Деталь прижимают в торец к опоре, которая препятствует сдвигу детали вперед при фрезеровании.

Для создания надежной фиксации заготовки, на неподвижных установочных опорах и сохранения этого положения в процессе обработки применим гидравлический зажим со сферической формой контактной поверхности, он препятствует вылету заготовки вверх, движению детали вперед, вправо и проворачивании заготовки в приспособлении. Таким образом у заготовки отнимаются все 6 степеней свободы и ее легко можно обработать.

2. Разработка принципиальной схемы приспособления

При анализе технологической операции было установлено, что при выбранной схеме базирования и закрепления заготовка устанавливается на нижние опорные пластины, базируется на торец. Сверху поджимается прижимом, имеющим призматическую форму.

Заготовка закрепляется гидравлическим зажимным устройством.

Последовательность разработки принципиальной схемы приспособления следующая:

изображаем контуры заготовки соответствующие операционному эскизу на данную операцию в 2х – 3х видах.

Затем схематично изображаем инструмент в крайнем положении, затем реализуем схему базирования заготовки и схему закрепления заготовки и показываем схему корпуса приспособления.

3. Расчет режимов резания

1. Глубина резания при фрезеровании

t = h= 5,0 мм;

2. Определяем подачу, при Ra=2,5;

So=0.2мм/об; Sz=(0.23…0.5)мм/об;

3. Выбираем диаметр фрезы и число зубьев. Фреза торцевая из БС.

D=50мм;Z=12;

Ширина фрезерования В=30мм;

4. Среднее значение периода стойкости

5. Скорость резания

6. Определяем обороты шпинделя, соответствующие найденной скорости

по паспорту ng=250об/мин;

7. Действительная скорость резания

4.Расчет сил резания при фрезеровании

Главная составляющая силы резания при фрезеровании – окружная сила Pz, H,

Рис.3

Принициальная схема приспособления

5.Расчет коэффициента надежности закрепления детали

где К0 – гарантированный коэффициент запаса;

К1 – коэффициент, учитывающий состояние поверхности заготовки;

К2 - коэффициент, учитывающий увеличения сил резания от прогрессирующего затупления инструмента;

К3 – коэффициент, учитывающий изменение сил резания при обработке прерывистых поверхностей;

К4 – коэффициент, учитывающий непостоянство сил при зацеплении;

К5 – коэффициент, учитывающий непостоянство сил зажимных устройств с ручным приводом;

К6 - коэффициент, учитывающий неопределенность мест контакта плоских базовых поверхностей 3Г/ЗГ - заготовка/ с плоскими поверхностями Ц.Э. /Ц.Э. – центрирующий элемент/

6. Расчет сил зажима

Рис.4

Расчетная схема

где Pz – составляющая сила резания, Pz=2060H;

a,b – расстояния, a=50мм; b=100мм;

К – коэффициент по самоторможению,К=0,8;

f – коэффициент трения, f=0.35.

7. Определение тягового усилия Q и параметров гидроцилиндра

Рис. 5

Расчетная схема

На рис. 5 представлена схема, определяющая структуру зажимного устройства станочного приспособления. При анализе схемы определяется сила на штоке гидроцилиндра – Q.

где i=i1+i2 – соответственно передаточная отношения рычажного и клинового механизма.

где j1 и j2 – соответственно углы трения на наклонной и горизонтальной поверхности клина

Общее передаточное отношение i=i1´l2=0.7´2.36=1.65

Уравнение силового замыкания при принятых замечаниях имеет вид:

Диаметр гидроцилиндра определяется по формуле:

По ГОСТ 9887-70 принимается DЦ =100мм.

8. Расчет точности обработки

При выборе операции существенное влияние на не точность обработки могут оказывать погрешности Iго и IIго рода, из них складывается суммарная погрешность обработки

Выявляем все составляющие суммарной погрешности обработки, используя уравнение:

где

DМо – погрешность метода обработки, к1=0,6;

DС – погрешность от неточности сжатия;

DU – погрешность от неточности изготовления и износа инструмента;

Dизм – погрешность измерения;

Dпб – погрешность базирования;

Dпз – погрешность зацепления;

Dпu – погрешность изготовления и износа установочных элементов СП;

Dпн – погрешность пространственного расположения инструмента;

Dпр - погрешность пространственного расположения установочных поверхностей.

Dj - зазор между основанием заготовки и опорными планками


Страница: