Разработка системы телемеханикиРефераты >> Технология >> Разработка системы телемеханики
Uвых = IR∙2 n-1.
Если все ключи замкнуты, то на выходе возникает максимальное значение напряжения:
Uвых = IR∙ (2 n-1 + 2 n-2 + … + 21 + 20).
Это значит, что выходное напряжение является функцией преобразуемой кодовой комбинации при условии, что сопротивление и источники тока идеальные.
Цифровая индикация.
Для отображения цифровой информации полученной с выхода АЦП в системе используется устройство цифровой индикации с формированием цифр в процессе считывания. В нашем случае применяем индикаторы на светодиодных матрицах, в которых формирование цифры происходит из семи полосок, так называемые семисигментные индикаторы. Такие индикаторы требуют специальное устройство для их управления, которое называется дешифратором двоичного кода в код управления семисигментным индикатором. Одна декада такого семисигментного индикатора с дешифратором изображена на рисунке 6.9. В качестве индикатора используется семисигментный индикатор АЛС 321, а в качестве дешифратора интегральная микросхема 514 ИД 2. Например, при поступлении на вход дешифратора кода соответствующего четырем, т.е. 0100, открываются ключи выходам дешифратора 514 ИД 2 и начинают светиться сегменты 2,3,6,7, образуя цифру 4.
Преобразователь двоичного кода в инверсный.
В качестве кода адреса КП используется инверсный код. Инверсный код по сравнению с двоичным кодом имеет удвоенное число символов, причем вторая половина группы символов совпадает с первой, если число 1 в исходной группе чётное и добавляемые разряды инвертируются, если число 1 в исходной группе нечётное. Схема, выполняющая данную функцию приведена на рис.6.10.
Работает схема следующим образом. Исходная комбинация поступает на вход устройства анализа чётности 1, на входы инверторов 2-4 и первый канал коммутатора 5. Выходы инверторов подключены ко второму каналу коммутатора. При наличии в исходной комбинации чётного числа 1, на выходе анализатора чётности формируется логический 0, и данные с канала 1 коммутатора в прямом коде выдаются на выход коммутатора. Если число 1 – нечётно, на выходе схемы 1 формируется 1 и с канала 2 коммутатора код в инверсном виде выдаётся на выход коммутатора.
Приём инверсного кода осуществляется в 2 этапа. На первом этапе определяется число 1 в первой основной группе символов. Если число 1 – чётное, то вторая группа принимается без изменений, если нечётное, то символы второй группы инвертируются. После этого они поэлементно сравниваются и при наличии хотя бы одного несовпадения, комбинация бракуется.
Схема приёмной части инверсного кода приведена на рис.6.11. Работает она следующим образом. Первая исходная группа принимается устройством анализа чётности 1, вторая в исходном состоянии поступает на вход первого канала коммутатора 5 и в инверсном коде на вход второго канала коммутатора 5. Если число 1– чётно, то на выходе схемы 1 формируется 0 и информация второй группы в прямом коде поступает через коммутатор 5 на входы полусумматоров 6-8, где поразрядно сравниваются при совпадении на выходе элемента 9 формируется уровень 0, что свидетельствует об отсутствии ошибок. Если сравнение не происходит, то на выходе элемента 9 формируется 1 и кодовая комбинация бракуется. Если число 1 в исходной комбинации нечётно, то на выход коммутатора передаётся инверсный код второй группы и далее всё протекает аналогично.
Преобразование двоичного кода в код Хемминга.
В коде режима КП используется код с исправлением одной ошибки. Код режима КП имеет три двоичных разряда и соответствующие им 6 разрядов кода Хемминга.
Код Хемминга имеет вид:
К1 К2 d3 К3 d2 d1
d1 – d3 – код данных (d3 – старший разряд);
К1 - К3 – контрольные символы.
Определение состава контрольных символов, т.е. определение того какой контрольный символ должен стоять на контрольной позиции (0 или 1) производится по коэффициентам при помощи проверки на чётность следующим образом. В таблице 6.1 записаны все кодовые комбинации, исключая нулевую, для трёхразрядного двоичного кода и рядом справа, сверху вниз поставлены символы комбинации кода Хемминга.
Таблица 6.1.
3 (d3) |
2 (d2) |
1 (d1) |
Символы кода |
0 0 0 1 1 1 |
0 1 1 0 0 1 |
1 0 1 0 1 0 |
К1 К2 d3 К3 d2 d1 |
По таблице 6.1 составляется таблица 6.2 , в которой выписаны символы в трёх строках в следующей последовательности:
Таблица 6.2.
К1 |
+ d3 |
+ d2 |
- |
К2 |
+ d3 |
- |
+ d1 |
К3 |
- |
+ d2 |
+ d1 |
В первую строку таблицы 6.2 записываются символы, против которых проставлены символы «1» в младшем разряде комбинации двоичного кода таблицы 6.1, во вторую строку проверочных коэффициентов записываются символы, против которых стоит 1 во втором разряде таблицы 6.1, третью строку таблицы 6.2 записываются символы, против которых стоит 1 в третьем разряде таблицы 6.1. Число проверок означает число строк в проверочной таблицы 6.2,которое равно числу контрольных символов К.
Нахождение состава контрольных символов при помощи проверок производится следующим образом. Суммируются информационные символы, входящие в каждую строку таблицы 6.2. Если сумма 1 в данной строке чётная, то значение символа К=0, если нечётное, то К=1. При помощи первой строки таблицы 6.2 определяется К1, второй – К2 и третьей – К3.
Схема преобразователя двоичного кода в код Хемминга приведена на рис.6.12.
Декодирование кода Хемминга производится методом проверки комбинации на чётность по коэффициентам таблицы 6.2 (см. рис.6.13). Если комбинация принята без искажений, то сумма 1 по модулю 2 даёт 0. По результатам суммирования каждой из проверок составляется двоичное число, которое указывает на место искажения.
Например, первая и вторая проверки показали наличие искажения, а третья дала 0. Получаем число 011=3, это означает, что в третьем символе кодовой комбинации, включающей и контрольные символы (счёт слева направо) возникли искажения, поэтому этот символ необходимо исправить на обратный. После этого контрольные символы, стоящие на заранее известных местах отбрасываются.
Декодер кода Хемминга в исходный код приведён на рис.6.13.