Технология изготовления листовой электротехнической сталиРефераты >> Технология >> Технология изготовления листовой электротехнической стали
Существенное влияние на магнитные свойства холоднокатаной динамной стали оказывает технология ее передела в цехах холодной прокатки.
ТАБЛИЦА 7. МЕХАНИЧЕСКИЕ СВОЙСТВА ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ.
Si, % |
,кгс/см2 |
, кгс/мм2 |
, % |
1 1,5 2,0 2,5 |
32 36 40 46 |
20 24 29 33 |
54 45 45 42 |
ТАБЛИЦА 8. СХЕМА ПРОКАТКИ ПОЛОСОВОЙ ДИНАМНОЙ СТАЛИ
№ пропуска |
Толщина полосы, мм |
Обжатие за пропуск |
Суммарное обжатие, % |
Передел текучести, кгс/мм2 | |||
До пропуска |
После пропуска |
Абсолютное, мм |
Относительное, мм |
До пропуска |
После пропуска | ||
1 2 3 4 5 |
2 1,3 0,95 0,7 0,58 |
1,3 0,95 0,7 0,58 0,5 |
0,7 0,35 0,25 0,12 0,08 |
35 27 26 17 14 |
35 52,7 65 71 75 |
38 72 80 85 87 |
72 80 85 87 88 |
Протравленные рулоны после обрезки кромок и промасливания прокатывают на заданную толщину за один пропуск через стан.
Высокая пластичность динамной стали и относительно небольшое сопротивление деформации позволяют холодную прокатку этой стали производить с суммарным обжатием до 80%, без промежуточного отжига.
Холодная прокатка динамной стали с содержанием кремния до 2% производится из рулонного горячекатаного подката толщиной 2-2,5 мм в один передел. В табл. 96 приведена схема прокатки рулонной динамной стали с начальной толщины 2 мм до 0,5 мм на пятиклетевом стане холодной прокатки.
Замерами энергосиловых параметров работы пятиклетевого непрерывного стана 1200 при прокатке малоуглеродистой стали (08кп, СтЗ) и динамной стали установлено, что при прокатке последней при прочих равных условиях удельный расход электро-энергии составлял 123-128 кВт-ч/т, а при прокатке малоуглеродистой стали 90-115 кВт-ч/т, т. е. в 1,1-1,4 раза больше. Решающее влияние на магнитные свойства динамной стали имеет со, держание углерода, поэтому наряду с мерами, принимаемыми в сталеплавильных цехах по снижению содержания углерода в слитках, высокие магнитные свойства динамной стали обеспечиваются специальной обезуглероживающей обработкой. Эта обработка может быть осуществлена при обезуглероживающем отжиге горячекатаных рулонов в непрерывных агрегатах, где отжиг производится в обезуглероживающей среде, подобной применяемым в производстве холоднокатаной трансформаторной стали.
Обезуглероживающая термическая обработка усиливает анизотропию магнитных свойств динамной стали, что видно из данных таблицы 9.
ТАБЛИЦА 9. МАГНИТНЫЕ СВОЙСТВА СТАЛИ В ЗАВИСИМОСТИ ОТ ТЕРМИЧЕСКОЙ ОБРАБОТКИ .
Вид термической обработки |
Удельные потери, Вт/кг |
Магнитная индукция, Гс | |
Р10 |
Р15 | ||
Без обработки………………… Черный отжиг(775-825 град.С в течение 40ч)………………… |
1,84 1,84 1,82 1,95 |
4,16 4,24 4,10 4,47 |
15600 15500 16000 15650 |
В числителе указаны магнитные свойства для продольных образцов, а в знаменателе - для поперечных.
** По Международной системе СИ 1 Гс == 10~4 Тл.
Для окончательной термической обработки – отжига холоднокатаной динамной стали - могут применяться колпаковые и проходные термические печи. При термической обработке стопы рулонов в колпаковых печах (температура отжига 880-940° С, выдержка 12 ч, охлаждение под колпаком до 650° С, а затем под муфелем до 200° С) обеспечиваются заданные магнитные свойства, но при этом в результате некоторой деформации части витков рулонов отожженные рулоны следует подвергать дрессировке.
Для снятия напряжений в металле после дрессировки проводят повторный отжиг металла. Это связано с дополнительной загрузкой прокатного оборудования, отжигательных печей и с нерациональным удлинением технологического процесса производства стали.
Второй отжиг рулонов после дрессировки осуществляли при 750° С и выдержке 12 ч с последующим охлаждением под муфелем до 200° С. В связи с этим в новых цехах для производства холоднокатаной динамной стали термическая обработка рулонов после холодной прокатки осуществляется в проходных печах.
Наряду с листовой динамной сталью массового применения для изготовления некоторых крупных электромашин необходима сталь с еще меньшими удельными потерями.
При одинаковой толщине листа и одинаковом химическом составе наибольшее влияние на удельные потери оказывает величина зерна (чем оно крупнее, тем ниже удельные потери).
Рост зерна при отжиге в значительной степени зависит от величины обжатия полосы на последнем переделе при холодной прокатке. Наиболее крупные зерна вырастают в случае применения так называемых «критических обжатий», величина которых для динамной стали находится в пределах 8-10%.
Повышение температуры отжига также способствует росту зерна, уменьшает остаточные напряжения и искажения решетки, поэтому по мере повышения температуры нагрева при отжиге коэрцитивная сила и удельные потери снижаются.
Однако при этом следует иметь в виду, что в стали с содержанием до 2,0% Si даже при минимальном содержании углерода при 950-1000° С происходит фазовое превращение ее во всем объеме. Переход через критические точки при нагреве и охлаждении обычно сопровождается измельчением зерен.
При отжиге в проходной печи лучшие магнитные свойства получаются при отжиге ниже температуры фазового превращения. Повышение температуры отжига с 960 до 1100° С приводит к увеличению удельных потерь на 3-5%. Снижение содержания углерода с 0,050 до 0,020% уменьшает удельные потери на 20-25%. Эффективным мероприятием в отношении снижения удельных потерь является применение прокатки с небольшим суммарным обжатием (критическая деформация). Наилучшие результаты получаются при сочетании обезуглероживания и критической деформации.