Расчет ущерба от ядерного взрыва и химического заражения
Для повышения устойчивости объекта к данном взрыву необходимо провести следующие мероприятия:
· Разработать план накопления и строительства необходимого количества защитных сооружений, которым предусматривается укрытие рабочих и служащих в быстровозводимых укрытиях в случае недостатка убежищ, отвечающих современным требованиям.
· При проектировании и строительстве новых цехов повышение устойчивости может быть достигнуто применением для несущих конструкций высокопрочных и лёгких материалов (сталей повышенной прочности, алюминиевых сплавов). При реконструкции существующих промышленных сооружений, так же как и при строительстве новых, следует применять облегчённые междуэтажные перекрытия и лестничные марши, усиленные крепления их к балкам, применять лёгкие, огнестойкие кровельные материалы. Обрушение этих конструкций и материалов принесёт меньший вред, чем тяжёлые железобетонные перекрытия, кровельные и другие конструкции. В наиболее ответственных сооружениях могут вводиться дополнительные опоры для уменьшения пролётов, усиливаться наиболее слабые узлы и отдельные элементы несущих конструкций.
· Повышение устойчивости оборудования достигается путём усиления его наиболее слабых элементов, а также созданием запасов этих элементов, отдельных узлов и деталей, материалов и инструментов для ремонта и восстановления повреждённого оборудования. Некоторые виды технологического оборудования размещают вне здания - на открытой площадке территории объекта или под навесами. Это исключает повреждение его обломками ограждающих конструкций.
· Повышение устойчивости технологического процесса достигается заблаговременной разработкой способов продолжения производства при выходе из строя отдельных станков, линий или даже целых цехов за счёт перевода производства в другие цеха; размещением производства отдельных видов продукции в филиалах; путём замены вышедших из строя образцов оборудования другими, а также сокращением числа используемых типов станков и другого оборудования.
· Для повышения устойчивости системы энергоснабжения создаются дублирующие источники электроэнергии, газа, воды, пара путём прокладки нескольких подводящих коммуникаций и последующего их закольцевания.
· Должны проводиться мероприятия по уменьшению вероятности возникновения вторичных факторов поражения и ущерба от них.
2 Оценка химической обстановки при разрушении ёмкости с
сильнодействующими ядовитыми веществами (СДЯВ).
2.1 Исходные данные:
Исходные данные | |
Наименование СДЯВ |
кислота |
Эквивалентное количество СДЯВ по первичному облаку, т. |
1 |
Эквивалентное количество СДЯВ по вторичному облаку, т. |
10 |
Скорость ветра, м/с |
2 |
Состояние вертикальной устойчивости воздуха |
изометрия |
Азимут расположения объекта и направления ветра относительно ёмкости со СДЯВ |
90 |
Расстояние объекта от ёмкости со СДЯВ, км |
1 |
Размер объекта |
1 х 0,5 км |
Высота обвалования емкости со СДЯВ, м |
0,5 |
Наружная температура воздуха |
20º Ñ |
2.2 Определение опасности СДЯВ и зоны химического заражения (ЗХЗ).
2.2.1 Описание СДЯВ
Кислоту можно отнести к отравляющим веществам общеядовитого действия. Данное СДЯВ характеризуется стойкостью и токсичностью, оно поражает органы и ткани, вызывают воспалительно-некротические процессы и оказывают резорбтивное действие. Оксиды многих кислот также являются высокотоксичными соединениями. В организм человека кислота может проникать любыми путями (через дыхательные пути, кожу, и пищеварительный тракт). Попадая на кожу, кислота коагулирует тканевые белки и вызывает дегидратацию тканей, вследствие чего образуется сухой плотный струп. Из-за гибели нервных окончаний струп становится нечувствительным к внешним воздействиям. Поражение, как правило, распространяется на сосочковый слой кожи, а иногда распространяется и на большую глубину (химический ожог III-IV степени). Поражённый участок быстро омертвевает. Воздействие кислоты на глаза вызывает омертвление роговицы, что приводит к слепоте. Вдыхание паров кислоты также приводит к поражению людей.
2.2.2 Расчёт глубины ЗХЗ.
Полная глубина ЗХЗ рассчитывается по следующей формуле: Г = Г* + Г** , где Г* и Г** - соответственно большее и меньшее значения глубины ЗХЗ, рассчитываемые по первичному и вторичному облакам.
В рассчитываемом случае глубина ЗХЗ по первичному облаку равна 3.8 км , а по вторичному 10.8 км. В итоге полная глубина ЗХЗ будет равна 3.8 + 10.8 = 14.6 км.
2.2.3 Рисунок ЗХЗ в масштабе.
см. рисунок 4
2.2.4 Определение времени, за которое заражённое облако достигнет объекта.
Время подхода облака СДЯВ к объекту определяется по формуле T = R / Vп, ч. , где R – расстояние объекта от ёмкости со СДЯВ, км, Vп – скорость переноса переднего фронта заражённого облака, которая определяется скоростью ветра и вертикальной устойчивостью атмосферы (воздуха).
В расчётном случае скорость переноса воздуха будет равна 12 м/с. Отсюда время подхода облака будет равно:
T = 1 / 12 ч. = 5 минут.
2.2.5 Определение возможных людских потерь в очаге поражения
Расчётные условия | |
Количество работников, чел. |
10000 |
Количество находящихся в укрытиях, чел. |
5000 |
Обеспечено противогазами, чел. |
8000 |
В этих условиях структура потерь людей из пострадавших составит:
Структура потерь людей из пострадавших | ||
в укрытиях |
на открытой местности | |
Лёгкой степени с выходом из строя до нескольких дней |
175 |
313 |
Средней и тяжёлой степени, нуждающихся в госпитализации, с выходом из строя до двух недель и более |
280 |
500 |
Со смертельным исходом |
245 |
438 |
Общее количество пострадавших, чел |
700 |
1250 |