Проблема человечества
Особенности озер определяются их размерами, притоком питательных веществ, донным субстратом, подстилающими породами, атмосферными осадками и множеством других параметров. Ключевым моментом в реакциях пресноводных экосистем на климатические возмущения является предполагаемое снижение температуры, а на втором месте стоит сокращение инсоляции. Сглаживание температурных колебаний особенно сильно выражено в крупных пресных водоемах. Однако их экосистемы в отличие от экосистем открытого океана должны пострадать от изменений температуры, возможных после ядерной войны.
Установление на длительный период отрицательных температур может вызвать образование на поверхности водоемов толстого слоя льда. Слой льда на мелководном озере может охватить значительную долю его объема.
Таблица 2.1.2. Распределение пресных озер и водохранилищ по
объему и площади
Площадь, км |
Европа |
Азия |
Северная Америка |
Свыше 10000 |
1 17700 908 |
4 92670 23200 |
8 327280 24322 |
1000-10000 |
26 74989 995 |
21 67070 3128 |
22 73185 1258 |
100-1000 |
23 9618 479 |
36 16760 520 |
17 7252 214 |
Российские специалисты собрали статистические данные по размерам озер, включающие информацию о площади поверхности водоемов и их общем объеме. Эти данные обобщены в таблице 2.1.2. Следует отметить, что подавляющее большинство озер, т.е. наиболее часто встречающиеся и доступные человеку, относится к категории самых мелких. Водоемы этой категории будут в наибольшей степени подвержены промерзанию на значительную глубину. В табл. 2.1.3 приводятся статистические данные по площади и объему озер различных размерных классов.
Таблица 2.1.3. Распределение объема воды по глубинам для озер
различных размерных классов
Площадь, км |
Процент общего объема 0.5 1.0 1.5 2.0 2.5 |
В процентах общей площади по общего объема полушарию по полушарию |
Свыше 10000 |
0.5 0.9 1.3 1.8 2.2 |
22 86 |
1000-10000 |
2.0 4.0 5.8 7.6 9.2 |
11 10 |
100-1000 |
1.4 2.8 4.2 5.5 6.8 |
2 2 |
10-100 |
14 27 38 49 58 |
12 0.8 |
1-10 |
28 50 68 81 91 |
19 0.6 |
Менее 1 |
58 88 100 100 100 |
35 0.5 |
Одной из основных работ по оценке возможных последствий войны для озерных экосистем считается исследование Пономарева с сотрудниками, подготовленное а рамках проекта СКОПЕ-ЭНЮУОР. В этом исследовании была использована имитационная модель, разработанная в Санкт-Петербургском научно-исследовательском вычислительном центре Академии Наук для оценки динамики озерных экосистем и входящих в них видов, взаимоотношений между озерами и их водоразделами и влияния на озера промышленного развития. Рассматриваются три биотических компонента (фитопланктон, зоопланктон и детрит), связанные с такими понятиями, как азот, фосфор, донные осадки, растворенный кислород, температура воздуха, инсоляция и радиация (рис. 2.1.2). В разных вариантах анализа начало возмущения (ядерная война) приходилась либо на февраль, либо на июль.
Результаты моделирования февральской ядерной войны представлены на рис. 2.1.3, где приведены как нормальные, так и предполагаемые кривые изменения температуры воды, инсоляции, биомассы фитопланктона, зоопланктона, детрита и отношения количества минерального азота к органическому.
Последствия климатических изменений более серьезны и долгосрочны (рис. 2.1.4). Возвращение температуры и освещенности к нормальным уровням произойдет при этом сценарии как раз к моменту обычного наступления зимы.
Если климатические возмущения, вызванные ядерной войной, произойдут зимой там, где озерная вода в норме имеет температуру, близкую к нулю, они приведут к увеличению толщины льда.
В мелководных озерах не исключено промерзание до дна, приводящее к гибели большинства живых организмов. Если острые зимние возмущения климата затронут пресноводные экосистемы, не замерзающие в нормальной обстановке, биологические последствия обещают быть весьма серьезными. Хронические климатические нарушения, начавшиеся весной, или затянувшиеся последствия зимней ядерной войны могут задержать таяние льда.
При наступлении морозов в конце весны (а для южных озер - в любое время года) скорее всего произойдет полное отмирание живых компонентов экосистем под прямым воздействием падения температуры и освещенности. Однако, если морозы ударят летом, последствия, вероятно, будут не столь опустошительными, поскольку многие из наиболее уязвимых стадий жизненных циклов уже будут пройдены. Масштабы последствий будут определяться продолжительностью холодов. Продолжительность воздействия особенно сильно скажется следующей весной.
Климатические возмущения в осеннее время будут иметь наименьшие последствия для северных пресноводных экосистем, поскольку к этому моменту живые организмы уже пройдут все репродуктивные стадии. Беспозвоночные, фитопланктон и редуценты, даже если их численность значительно сократилась, восстановятся, как только климатические условия возвратятся к норме. Тем не менее, остаточные эффекты могут еще долго сказываться на функционировании экосистемы в целом, причем не исключается возможность некоторых необратимых процессов.
ЗАКЛЮЧЕНИЕ
Возможные глобальные последствия ядерной войны для окружающей среды находились в центре внимания ряда исследователей в течение четырех десятилетий с момента первых атомных бомбардировок Японии.
После анализа приводимых данных по чувствительности экосистем к послевоенным экологическим возмущениям возникает ряд совершенно очевидных выводов: