Мониторинг окружающей среды
2. высокодисперсные (коллоидные растворы)
Поверхность большинства коллоидов природных вод заряжена отрицательно. При введении в дисперсную систему флокулянтов или коагулянтов (несущих положительный заряд на своей поверхности) заряд частиц компенсируется, силы отталкивания ослабевают.
В качестве коагулянта на станции водоподготовки г. Омска применялся сернокислый алюминий, а теперь применяют флокулянт анионнго типа ВПК- 402, который вызывает образование крупных хлопьев без обработки примесей воды коагулянтами.
Рабочие дозы реагентов подбираются методом пробного флокулирования в лабораторных условиях. Практика показала, что на 1 мг. ВПК- 402 приходится 400 мг. Задержанных взвешенных веществ.
Подготовка питьевой воды на очистных сооружениях водопровода.
Ленинская очистная водопроводная насосно-фильтровальная станция (ЛОВС) обеспечивает бесперебойное снабжение населения качественной питьевой водой и производственное водоснабжение предприятий города. На городских очистных сооружениях водопровода осуществляется очистка и обеззараживание заборной из Иртыша воды и её подача с помощью насосных станций в разводящую сеть города.
Система подготовки питьевой воды включает в себя сложные технологические процессы. Забор воды осуществляется двумя водозаборами руслового типа (водозабор “Заря”) и ковшевого типа (водозабор “Падь”).
Насосная станция “Заря” была введена в эксплуатацию в 1949 г. Ёё проектная мощность составляла 162 тыс. м^3 в сутки, фактическая подача воды к настоящему времени после нескольких реконструкций достигает 396 тыс. м^3 в сутки. Проектная мощность водозабора “Падь”, введённого в строй в 1976 г. , составляет 594 тыс. м^3 в сутки, фактически станция работает в режиме от 209 тыс. м^3 до 440 тыс. м^3 в сутки.
На каждом из водозаборов установлена система автоматического дозирования флокулянта ВПК-402. В дальнейшем на очистных сооружениях в речной воде загрязняющие вещества при взаимодействии с флокулянтом образуют крупные хлопья и удаляются в процессе отстаивания и фильтрации.
Очистные сооружения фильтровальной станции имеют 3 параллельные технологические линии. На данный момент I блок выведен из эксплуатации и реконструируется под станцию очистки промывной воды от фильтров и отстойников с последующей подачей очищенной воды в резервуары чистой воды и ликвидацией сброса промывных вод в р. Иртыш.
Поступающая во II и III блоки очищаемая вода последовательно проходит первичное обеззараживание газообразным хлором в смесителях и отстаивание в горизонтальных отстойниках со встроенными камерами хлопьеобразования зашламлённого типа, где происходит взаимодействие загрязнений с реагентами, укрупнение взвесей и выпадение осадка.
После отстаивания вода поступает на скорые фильтры, где оставшиеся взвеси задерживаются слоями фильтрующего материала. После вторичного хлорирования вода поступает в резервуары чистой воды. По мере необходимости в период паводка производится профилактическое хлорирование на районных насосных станций.
До 1998 г. для очистных сооружений водопровода была характерна высокая себестоимость процесса очистки питьевой воды из-за применения дорогого реагента сернокислого алюминия, высоких утечек воды из не исправной запорнорегулирующей арматуры, не оптимальности процессов промывки фильтров и отстойников.
В 1995-98 г.г. проводились целенаправленные исследовательские работы по освоению новых технологий и реагентов с целью повышения эффективности работы очистных сооружений и улучшения качества питьевой воды.
Наиболее существенным достижением стало внедрение нового химического реагента флокулянта ВПК – 402. В товарном виде ВПК – 402 представляет собой вязкую жидкость жёлтого цвета. В нормальных условиях флокулянт не имеет запаха, привкуса, малотоксичен, хорошо растворим в воде.
Применение сернокислого алюминия – коагулянта имело ряд недостатков. При разгрузке-загрузке коагулянта и его транспортировке по городу происходило загрязнение атмосферы пылью сернокислого алюминия. Имели место трудности с поддержанием качества питьевой воды в зимнее время, когда в холодной воде с пониженной мутностью процессы коагуляции шли слабо. При этом с целью обеспечения качества питьевой воды повышался удельный расход коагулянта и хлора и, следовательно, содержание алюминия, свободного и связанного хлора в питьевой воде и промывных водах фильтров, сбрасываемых в р. Иртыш.
С применением флокулянта таких проблем не стало. Результаты применения ВПК – 402 показали что:
- Резко уменьшилась бактериологическая загрязнённость очищенной воды;
- “Водоканал” получил возможность проработать план мероприятий по внедрению на ЛОВС технологии повторного использования промывных вод фильтров с ликвидацией их сброса в водоём;
- С внедрением ВПК-402 исчезла зависимость качества очистки питьевой воды от её температуры;
- Внедрение ВПК-402 принесло значительный экологический эффект.
Флокулянт, попадающий в водоём с промывными водами, абсолютно безвреден. До его внедрения в водоём ежегодно попадало до 8 тыс. тонн коагулянта.
Сегодня очистные сооружения водопровода обеспечивают полное соответствие качества воды санитарно – гигиеническим нормативам. Высокое качество питьевой воды подтверждается результатами лабораторных исследований химико-бактериологической лаборатории водопровода МУП “Водоканал” и центров Госсанэпиднадзора.
В последние годы в сложных экономических условиях специалисты “Водоканала” вынуждены активно работать над внедрением новых отечественных и зарубежных технологий и реагентов, разработка которых даёт значительную экономию средств и позволяет снабжать город качественной водой.
Система контроля качества питьевой воды.
Залог здоровья и безопасности жителей большого города – соответствие качества питьевой воды санитарно – гигиеническим нормативам.
Качество питьевой воды контролируется непрерывно на всех этапах ёё подготовки и транспортировки от источника водоснабжения до потребителя на всех этапах технологической цепи.
Функции контроля качества питьевой воды осуществляется химико– бактериологической лабораторией водопровода ( ХБЛВ )
Работа ХБЛВ построена в строгом соответствии с нормативными документами под контролем органов Госсанэпиднадзора .
С января 1999 г. вступили в силу новые федеральные стандарты обеспечения и контроля качества питьевой воды, разработанные с учётом рекомендаций Всемирной организации здравоохранения.
С 1999 г. ХБЛВ перешла на работу в условиях повышенных требований СанПиН и ГОСТ.
На основе нормативных документов федерального уровня с учетом экологического состояния р. Иртыш на предприятии разработана по согласованию с органами Госсанэпиднадзора индивидуальная рабочая программа лабораторно- производственного контроля питьевой воды.
Ежедневно на очистных сооружениях и сетях водопровода отбирается порядка 60 проб воды и проводится более 1000 анализов всего по более чем 40 показателям. Особо строгий “паводковый “ режим контроля вводится на весенне-летний период.