Естественные ограничения на глобальную энергетическую систему
Рефераты >> Экология >> Естественные ограничения на глобальную энергетическую систему

Рассмотрим какие существуют естественные ограничения на полное производство энергии Мы не будем обсуждать природные ресурсы, а обратимся к экологическим последствиям, которые как теперь стало ясно, могут проявиться гораздо раньше, чем будут выработаны ископаемые энергоресурсы

Энергетический баланс Земли

Очевидно, что вся произведенная энергия раньше или позже выделится в виде тепла на поверхности Земли, которое в принципе может повлиять на климат Сравнение производимой человеком энергии с полной энергией Солнечного излучения, падающего на Землю, приведено в Таблице 3. Пока еще энергия, производимая человеком, меньше чем 10-4 от Солнечной энергии, достигающей поверхности Земли, и составляет всего лишь несколько процентов от ее периодических изменений, которые, как считают, могут быть ответственны за периодические климатические изменения, происходившие в истории Земли. Таким образом, антропогенное производство энергии, добавляющее лишь 0 01% к Солнечной энергии, слишком мало, чтобы оказать прямое влияние на климат. Более опасным может оказаться изменение химического состава атмосферы, которое может привести к изменению углеродного цикла и, в частности, к изменению глобального теплового баланса за счет парникового эффекта.

Таблица 3. Сравнение производимой человеком энергии с Солнечной энергией [1,3]

Полное производство энергии (1994)

1,2*1013Вт

Солнечная постоянная

1370 Вт/м2

Солнечная энергия, падающая на Землю

1,8*1017 Вт

Солнечная энергия, достигающая поверхности Земли

1,3*1017 Вт

Амплитуда изменения Солнечного излучения в 11 летнем цикле

0 1%

Изменение инсоляции при периодических изменениях Земной орбиты (период 20-40 тысяч лет) Механизм Миланковича для объяснения ледниковых периодов [1, 10]

3%

Как было показано выше, большая часть энергии (86%) производится человечеством за счет сжигания ископаемых топлив, или иначе говоря за счет использования химической реакции (С + О2 = СO2+ 94 ккал/моль. Побочным продуктом, которой является углекислый газ, СO2, и, таким образом, практически весь углерод, сжигаемый при производстве энергии, выбрасывается в атмосферу в форме углекислого газа. Тем самым человек при производстве энергии напрямую вмешивается в один из фундаментальных циклов, на котором построена жизнь на Земле - углеродный цикл. Выбросы углекислого газа на уровне современной энергетики уже приводят к сдвигам в естественном углеродном цикле и, начиная с некоторого уровня, могут вызвать необратимые изменения в Биосфере. Парниковый эффект от углекислого газа производимого при производстве энергии был предсказан более ста лет назад С. Аррениусом. В то время это были чисто теоретические предположения, и было не ясно, будет ли весь выброшенный углекислый газ поглощаться мировым Океаном. Сто лет спустя мы знаем гораздо больше о балансе углекислого газа в атмосфере.

Баланс углекислого газа в атмосфере.

Количество углерода содержащегося в атмосфере в виде углекислого газа, его количество в мировом Океане, и потоки производимые различными естественными и антропогенными источниками показаны на Рисунке 4. Каждый год зеленые растения поглощают из атмосферы примерно 100 Гигатонн (1 Гигатонна=109 тонн) углерода в процессе фотосинтеза и роста [II]. (Это соответствует средней продуктивности 20 ц/Га зеленой массы на 10% Земной поверхности). Примерно такое же количество углерода выбрасывается каждый год обратно в атмосферу при потреблении зеленых растений вторичными потребителями, их химическом разложении, лесными пожарами и другими естественными причинами. Полное количество углерода в биомассе, включая почвы, составляет по оценкам около 2200 Гт, что соответствует среднему времени жизни биомассы около 20 лет (близко ко времени жизни дерева). Пищевая цепь сообщества человек -свинья - зерно добавляет в сбалансированный круговорот углерода всего 1 Гт в год. Планктон и другие океанские растения, живущие на глубине до ста метров, куда проникает солнечный свет и где возможна реакция фотосинтеза, обмениваются с атмосферой примерно тем же количеством углерода, 90 Гт в год, что и наземные растения [12]. Океан содержит огромное количество углерода, 40000 Гт, в виде углекислого газа, растворенного в воде на большой глубине, но обмен между поверхностью и глубокими слоями очень медленный. Такой обмен имеет характерное время 500-1000 лет [I] и при нынешней концентрации углекислого газа в атмосфере по современным оценкам обеспечивает откачку около 2 Гт углерода в год.

Рисунок 4. Углеродный цикл в Биосфере [1,12], Потоки отмеченные стрелками приведены в Гигатоннах углерода в год. Около двух Гт из 5.5 Гт выброшенных при сжигании полезных ископаемых поглощается мировым Океаном. Дополнительная откачка в размере 0,2 Гт производится наземными растениями (включая эффект от вырубки тропических лесов). 3.3 Гт добавляется каждый год в атмосферу.

Геологические источники углекислого газа не велики. Например, источник СO2 от вулканической активности и эрозии геологических структур поставляет в атмосферу только 0.1 Гт углерода в год, что гораздо меньше, чем биогенные потоки.

Рисунок 4 приводит к интересным и неожиданным заключениям. Во первых, видно, что зеленые растения суши и моря в состоянии "съесть" весь углекислый газ из атмосферы примерно за 4 года. Это означает, что атом углерода в форме молекулы СO2 живет в атмосфере в среднем четыре года, до того момента, когда молекула будет поглощена зеленым растением при фотосинтезе.


Страница: