Полезность и рациональное поведение потребителя
Рефераты >> Экономическая теория >> Полезность и рациональное поведение потребителя

Экономисты неоднократно пытались избавиться от термина "полезность", имеющего некоторый оценочный характер, найти ему подходящую замену. Так, известный русский экономист Н. X. Бунге предлагал использовать термин "годность" (Nutze - нем.).

Итало-швейцарский экономист и социолог В. Парето предлагал заменить термин "полезность" неологизмом ophelimite, означавшим соответствие между вещью и желанием. Французский экономист Ш. Жид предлагал использовать термин "желаемость" (desirabilite - фр.), считая, что он "не предполагает у желания нравственных или безнравственных черт, разумных или безрассудных".[1]

Тем не менее термин "полезность" пережил своих критиков и используется поныне.

Итак, в количественной теории полезности предполагается, что потребитель может дать количественную оценку в ютилах полезности любого потребляемого им товарного набора. Формально это можно записать в виде функции общей полезности:

TU = F(QA, QB, ., QZ), (1)

где TU - общая полезность данного товарного набора; QA, QB, QZ - объемы потребления товаров А, В, ., Z в единицу времени.

Большое значение имеют предположения о характере функции общей полезности.

Зафиксируем объемы потребления товаров B,C, .,Z. Рассмотрим, как изменяется общая полезность товарного набора в зависимости от объема потребления товара А (например, яблок). В верхней части рис.1a изображена эта зависимость. Длина отрезка ОК равна полезности товарного набора при фиксированных нами объемах товаров В, С, ., Z и при нулевом объеме потребления товара А. В количественной теории предполагается, что функция TU в верхней части рис.1а возрастающая (чем больше яблок, тем большую полезность имеет товарный набор) и выпуклая вверх (каждое последующее яблоко увеличивает общую полезность товарного набора на меньшую величину, чем предыдущее). В принципе эта функция может иметь точку максимума (S), после которой она становится убывающей.

Рис.1 Общая и предельная полезность

В нижней части рис. 1а изображена зависимость предельной полезности яблок от объема их потребления.

Предельная полезность - это прирост общей полезности товарного набора при увеличении объема потребления данного товара на одну единицу.

Математически предельная полезность товара есть частная производная общей полезности товарного набора (1) по объему потребления готового товара:

(2)

Геометрически значение предельной полезности (длина отрезка ON) равно тангенсу угла наклона касательной к кривой TU в точке L. Поскольку линия TU выпукла вверх, с увеличением объема потребления г-того товара угол наклона этой касательной уменьшается и, следовательно, понижается и предельная полезность товара. Если при некотором объеме его потребления функция общей полезности достигает максимума, то одновременно предельная полезность товара становится нулевой.

Принцип убывающей предельной полезности часто называют первым законом Госсена, по имени немецкого экономиста Г. Госсена (1810-1859), впервые сформулировавшего его в 1854 г. Этот закон содержит два положения. Первое констатирует убывание полезности последующих единиц блага в одном непрерывном акте потребления, так что в пределе достигается полное насыщение этим благом. Второе констатирует убывание полезности первых единиц блага при повторных актах потребления.

Принцип убывающей предельной полезности заключается в том, что с ростом потребления какого-то одного блага (при неизменном объеме потребления всех остальных) общая полезность, получаемая потребителем, возрастает, но возрастает все более медленно. Математически это означает, что первая производная функции общей полезности по количеству данного блага положительна, а вторая - отрицательна:

(3)

Однако принцип убывающей предельной полезности отнюдь не универсален. Во многих случаях предельная полезность последующих единиц блага сначала увеличивается, достигает максимума и лишь затем начинает снижаться. Такая зависимость характерна для небольших порций делимых благ. Вторая затяжка выкуриваемой утром сигареты, возможно, имеет для любителя большую полезность, чем первая, а третья большую, чем вторая.

Такая ситуация показана на рис. 1б. в интервале от нуля до Q'A общая полезность возрастает быстрее, чем увеличивается объем потребления блага, растет и предельная полезность. В следующем интервале общая полезность растет медленнее, чем объем потребления, а предельная снижается от максимального уровня (в точке L') до нуля. Математически это означает, что на участке от нуля до Q'A и первая, и вторая частные производные функции общей полезности по объему потребления данного блага положительны:

(3*)

Таким образом, принцип убывающей предельной полезности, или первый закон Госсена, справедлив лишь в том случае, если вторая частная производная функции общей полезности отрицательна. Однако поскольку потребитель покупает на рынке не отдельные акты потребления, а определенные блага, мы можем считать, что для обращающихся на рынке товаров первый закон Госсена (3) выполняется.

Предположим теперь, что потребитель располагает некоторым доходом; цены на товары A, B, ., Z не зависят от его поведения и равны соответственно PA, PB, ┘,PZ товарного дефицита нет; все товары являются бесконечно делимыми (как, например, колбаса, сливочное масло и т.д.).

При этих предположениях потребитель достигнет максимума удовлетворения, если он распределит свои средства на покупку различных товаров таким образом, что: 1) для всех реально покупаемых им товаров А, В, С, . имеет место:

(4)

где MUA, MUB, MUC - предельные полезности товаров А, В, С; l - некоторая величина, характеризующая предельную полезность денег;

2) для всех непокупаемых им товаров Y, Z, . имеет место:

(5)

Равенство (4) показывает, что в оптимуме (максимум полезности при данных вкусах потребителя, ценах и доходах) полезность, извлекаемая из последней денежной единицы, потраченной на покупку какого-либо товара, одинакова, независимо от того, на какой именно товар она израсходована. Это положение получило название второго закона Госсена. Конечно, потребитель может раскаяться в покупке, даже удовлетворяющей равенству (4). Это будет означать, что "за время от покупки до раскаяния в ней" знак в (4) для данного товара изменился на противоположный.

Попытаемся показать теперь на основе количественного подхода, что объем спроса и цена связаны обратной зависимостью. Снова рассмотрим равенство (4).


Страница: