Ответы на экзаменационные вопросы по физике
7. Механические колебания (на примере математического или пружинного маятников). Характеристики колебательных движений: амплитуда, период, частота. Соотношение между периодом и частотой. График колебания
|
|
Механическими колебаниями называют движения тел, которые точно (или приблизительно) повторяются через равные промежутки времени. Примерами механических колебаний являются колебания математического или пружинного маятников (рис. 1). Свободные (собственные) колебания совершаются под действием внутренних сил колебательной системы, а вынужденные - под действием сил, не входящих в колебательную систему. Колебательные движения происходят, если: 1) сила, действующая на тело в любой точке траектории, направлена к положению равновесия, а в самой точке равновесия равна нулю; 2) сила пропорциональна отклонению тела от положения равновесия. Для пружинного маятника такой силой является сила упругости (FУПР = -k • x), для математического - равнодействующая сил тяжести маятника и упругости нити подвеса (F = - m • g • x / l). Координата колеблющегося тела изменяется со временем по закону синуса и графически представлена в виде синусоиды (рис. 2). Амплитуда (A) - наибольшее расстояние, на которое удаляется тело от положения равновесия. Период (Т) - время одного полного колебания. Частота - число колебаний за 1 секунду (). Период колебания определяют: для пружинного маятника Т = 2п^т/Н', для математического маятника .
8. Механические волны. Длина волны, скорость распространения волны и соотношения между ними. Звуковые волны. Эхо
Механические волны - это распространяющиеся в упругой среде возмущения (отклонения частиц среды от положения равновесия). Если колебания частиц и распространение волны происходят в одном направлении, волну называют продольной, а если эти движения происходят в перпендикулярных направлениях, - поперечной. Продольные волны, сопровождаемые деформациями растяжения и сжатия, могут распространяться в любых упругих средах: газах, жидкостях и твердых телах. Поперечные волны распространяются в тех средах, где появляются силы упругости при деформации сдвига, т. е. в твердых телах. При распространении волны происходит перенос энергии без переноса вещества. Скорость, с которой распространяется возмущение в упругой среде, называют скоростью волны. Она определяется упругими свойствами среды. Расстояние, на которое распространяется волна за время, равное периоду колебаний в ней (T), называется длиной волны l (ламбда). или . Звуковые волны - это продольные волны, в которых колебания частиц происходят вдоль ее распространения. Скорость звука в различных средах разная, в твердых телах и жидкостях она значительно больше, чем в воздухе. На границе сред с упругими свойствами звуковая волна отражается. С явлением отражения звука связано эхо. Это явление состоит в том, что звук от источника доходит до какого-то препятствия, отражается от него и возвращается к месту, где он возник, через промежуток времени не менее 1/15 с. Через такой интервал времени человеческое ухо способно воспринимать раздельно следующие один за другим звуки.
9. Потенциальная и кинетическая энергия. Примеры перехода энергии из одного вида в другой. Закон сохранения энергии
Энергия - характеристика состояния тела. Кинетическая энергия - энергия движущегося тела. Если на тело массой m действует постоянная сила P, совпадающая с направлением движения, то работа . Но , , тогда. Работа - мера изменения энергии. Кинетическая энергия. Работа действующих сил, приложенных к телу, равна изменению кинетической энергии . При , - кинетическая энергия равна работе, которую должна совершить сила, действующая на тело, чтобы сообщить данную скорость. Потенциальная энергия - энергия взаимодействия. Работа - потенциальная энергия тела, поднятого на высоту h над нулевым уровнем (например, над уровнем Земли). Знак «-» означает, что, когда работа силы тяжести положительна, потенциальная энергия тела уменьшается. Потенциальная энергия не зависит от скорости, а зависит от координаты тела (от высоты). Потенциальная энергия деформированной пружины. Сумму кинетической и потенциальной энергий тела называют его полной механической энергией. Полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения или упругости, остается неизменной при любых движениях тел системы. Это утверждение является законом сохранения энергии в механических процессах. На примере свободно падающего тела можно показать, что при его движении потенциальная энергия переходит в кинетическую. При этом потенциальная энергия уменьшается ровно на столько, на сколько увеличивается кинетическая энергия: или , т. е. полная механическая энергия во все время падения остается неизменной, хотя потенциальная энергия превращается в кинетическую.
10. Представления о дискретном состоянии вещества. Газообразное, жидкое и твердое состояния вещества. Опытное обоснование характера движения и взаимодействия частиц, из которых состоят вещества в различных агрегатных состояниях
Все вещества, независимо от их агрегатного состояния, состоят из огромного числа частиц (молекул и атомов), эти частицы непрерывно и хаотически движутся, а также взаимодействуют между собой. Эти положения имеют опытное подтверждение. Опытным обоснованием дискретности строения вещества является растворение краски в воде, приготовление чая и многие технологические процессы. Непрерывность, хаотичность движения частиц вещества подтверждается существованием ряда явлений: диффузии - самопроизвольного перемешивания разных веществ вследствие проникновения частиц одного вещества между частицами другого; броуновского движения - беспорядочного движения взвешенных в жидкостях мелких частиц под действием ударов молекул жидкости. О том, что частицы вещества взаимодействуют между собой, говорят опытные факты: притяжение (слипание, смачивание, усилие при растяжении), отталкивание (упругость, несжимаемость твердых и жидких тел). Силы взаимодействия частиц вещества проявляются только на расстояниях, сравнимых с размерами самих частиц. Агрегатное состояние вещества зависит от характера движения и взаимодействия. Газообразное состояние (газы легко сжимаются, занимают весь объем, имеют малую плотность) характеризуются большими расстояниями и слабым взаимодействием частиц вещества; жидкое состояние (жидкости практически не сжимаются, принимают форму сосуда) характеризуется плотной упаковкой и ближним порядком в упаковке частиц; твердое состояние (несжимаемы, кристаллическое строение) характеризуется плотной упаковкой и дальним порядком в упаковке частиц.