Световые колебания
Рефераты >> Физика >> Световые колебания

x* = C1 cos kt +C2 sin kt.

Частное решение неоднородного уравнения:

x** = [ h /(k2 – p2)] sin pt.

Общий интеграл

x = C1 cos kt +C2 sin kt + [ h /(k2 – p2)] sin pt.

Для определения постоянных интегрирования С1 и С2 найдём, кроме того, уравнение для х

x = -C1 k sin kt +C2 k cos kt + [ hp/(k2 – p2)] cos pt

и используем начальные условия задачи.

Рассматриваемое движение начинается в момент (t=0), когда деформация пружины является статической деформацией под действием грузов D и E. При принятом положении начала отсчёта О начальная координата груза D равна x0 = -fст E, причём fст E = GE sin α/c – статическая деформация пружины под действием груза Е.

Таким образом, при t=0

x0 = -fст E, x0 = 0.

Составим уравнение x = x(t) и x = x(t) для t=0:

x0 = C1; x0 = C2 k + hp/( k2 – p2),

откуда

C1 = -fст E, C2 = -hp/[ k( k2 – p2)].

Уравнение движения груза D имеет следующий вид:

x = -fст E cos kt – hp/[ k( k2 – p2)] sin kt + h/( k2 – p2) sin pt.

Найдём числовое значение входящих в уравнение величин:

k =√с/mD = √6 ∙100 /0,25 = 49 c-1;

fст E = GE sin α/c = 3 ∙9,81∙0,5 /6 ∙100 = 0,0245 м.

h/( k2 – p2) = cd/mD( k2 – p2) = 600 ∙0,02/0,25(2400 – 100) = 0,021 м;

hp/ k( k2 – p2) = 0,021 ∙10 /49 = 0,0043 м.

Следовательно, уравнение движения груза D

x = -2,45 cos 49t – 0,43 sin 49t +2,1 sin 10t (см).


Страница: