Наноэлектроника
Производство таких тонких пленок в явном виде весьма проблематично, и поэтому наблюдения в основном проводят на МДП-структурах, где в качестве тонкой пленки выступает диэлектрик. Но в настоящее время эффекты наблюдают на гетероструктурах (контакты между п/п с различной шириной запрещенной зоны). На таком контакте края энергетических зон испытывают скачки, ограничивающие движение носителей и играющие роль стенок квантовой ямы.
Структуры с одномерным электронным газом (квантовые нити)
В такой структуре два направления (y и z) очень малы, следовательно, энергетический спектр в каждом направлении можно описать формулой En = (hn/a)2/8m, где a – толщина пленки в данном направлении, т.к. в этом направлении образуется потенциальная яма. В оставшемся направлении (x) электроны могу передвигаться свободно. Образованную потенциальную яму надо считать бесконечно глубокой, следовательно, En должны быть малы по сравнению с действительной глубиной ямы Ф. Данное условие приводит к толщине нити порядка нанометров. Полная энергия носителей в квантово-размерной нити, аналогично тонким пленкам, носит смешанный дискретно-непрерывный спектр: E = Enm + px 2/2m, где px – компонента импульса в направлении нити (x).
Структуры с нуль-мерным электронным газом (квантовые точки)
В такой структуре все направления (x,y и z) очень малы, следовательно, энергетический спектр в каждом направлении можно описать формулой En = (hn/a)2/8m, где a – толщина пленки в данном направлении, т.к. в этом направлении образуется потенциальная яма. Образованную потенциальную яму надо считать бесконечно глубокой, следовательно, En должны быть малы по сравнению с действительной глубиной ямы Ф. Данное условие приводит к размеру точки порядка нанометров. Полная энергия носителей квантовой точки также носит смешанный дискретно-непрерывный спектр: E = Enml. Такие структуры особенно интересны тем, что их свойства аналогичны свойствам дискретного атома, поэтому их иногда называют искусственными атомами.
Структуры с вертикальным переносом
Реальные экспериментальные образцы содержат большое количество одинаковых или почти одинаковых квантовых объектов. Как правило, это не меняет физической картины, т.к. вклады от всех объектов просто суммируются. Ситуация резко меняется, если отдельные объекты находятся так близко друг к другу, что носители заряда могут туннелировать между ними.
Рассмотрим систему параллельных квантовых ям, показанную на рисунке 1, с очень тонкими (порядка единиц нанометров) широкозонными разделяющими слоями. При этом ямы уже не являются независимыми и могут
обмениваться электронами за счет туннелирования через широкозонный слой. Подобные структуры принято называть структурами с вертикальным переносом. Рисунок отвечает системе квантовых ям, но, подвергнув эту систему литографической процедуре, можно иметь систему квантовых нитей или точек, между которыми возможен вертикальный перенос. Подобные структуры служат основой для ряда приборов наноэлектроники.
Если число параллельных слоев в структурах с вертикальным переносом велико (как минимум, несколько десятков), мы имеем искусственную периодическую структуру, или сверхрешетку. Наиболее важным свойством сверхрешеток, определяющим все их уникальные физические свойства, является видоизменение их энергетического спектра по сравнению со спектром одиночной квантовой ямы. Из рисунка видно, что на электроны и дырки в сверхрешетке действует дополнительный прямоугольный потенциал V(z), связанный с разрывами зон на гетерограницах. Этот потенциал является периодическим, как и потенциал кристаллической решетки, и к нему применимы все основные выводы о свойствах уравнения Шредингера с периодическим потенциалом.
Движение носителей вдоль оси z (ось сверхрешетки) может быть описано с помощью квазиимпульса pz, причем энергия является периодической функцией с периодом h/(а + b). Энергетический спектр носит зонный характер и представляет собой чередование разрешенных и запрещенных зон. Эти зоны есть результат дробления исходной зоны проводимости (для электронов) и валентной зоны (для дырок), поэтому их принято называть минизонами.
Между энергетическими спектрами сверхрешетки и обычной кристаллической решетки существуют большие различия.
Во-первых, зонным спектром характеризуется лишь движение вдоль оси сверхрешетки z. В плоскости слоев носители движутся как свободные и полный спектр сверхрешетки резко анизотропен, так же как в рассмотренных выше двумерных системах.
Во-вторых, благодаря тому, что период сверхрешетки намного больше, чем параметр решетки кристалла, характерный масштаб энергий и импульсов в спектре оказывается значительно меньшим. Характерные ширины минизон измеряются десятыми или сотыми долями электронвольта, что сравнимо с тепловой энергией электрона. Поэтому движение по минизоне нельзя описать постоянной эффективной массой. Динамика в направлении оси сверхрешетки носит сложный характер, что служит причиной ряда необычных эффектов.
Технология квантово-размерных структур
Метод молекулярно-лучевой эпитаксии
Молекулярно-лучевая эпитаксия (МЛЭ) представляет собой усовершенствованную разновидность методики термического напыления в условиях сверхвысокого вакуума. Давление остаточных газов в вакуумной камере поддерживается ниже 10-8 Па (~10-10 мм рт. ст.).
Потоки атомов или молекул образуются за счет испарения жидких или сублимации твердых материалов, которые располагаются в источнике — эффузионной ячейке. Эффузионная ячейка представляет собой цилиндрический либо конический тигель диаметром 1—2 см и длиной 5—10 см. На выходе ячейка имеет круглое отверстие — диафрагму диаметром 5—8 мм. Для изготовления тигля используют пиролитический графит высокой чистоты либо нитрид бора ВN.
Потоки атомов (или молекул) необходимых элементов направляются на подложку и осаждаются там с образованием вещества требуемого состава. Схематическое изображение основных узлов установки МЛЭ приведено на рисунке. Количество эффузионных ячеек зависит от состава пленки и наличия легирующих примесей. Для выращивания элементарных полупроводников (Si, Gе) требуется один источник основного материала и источники легирующей примеси n- и р-типа. В случае сложных полупроводников (двойных, тройных соединений) требуется отдельный источник для испарения каждого компонента пленки. Температура эффузионной ячейки определяет величину потока частиц, поступающих на подложку, и тщательно контролируется. Управление составом основного материала и легирующих примесей осуществляется с помощью заслонок, перекрывающих тот или иной поток. Если в ходе выращивания структуры требуется резко менять концентрацию одной и той же примеси, то используют несколько источников этой примеси при разной температуре эффузионной ячейки. Однородность состава пленки по площади и ее кристаллическая структура определяются однородностью молекулярных пучков. В некоторых случаях для повышения однородности подложка с растущей пленкой постоянно вращается.