Природа времени гравитации материи
Рефераты >> Физика >> Природа времени гравитации материи

микроскопической теории необходимо пользоваться терминологией, применяемой в макромире.

Принцип соответствия сыграл важную роль в исследованиях де Бройля. Он выяснил, что не только световые волны обладают дискретной структурой, но и элементарным частицам материи присущ волновой характер. На повестку дня встала проблема создания волновой механики квантовых объектов, которая в 1929 году была решена Э. Шредингером, который вывел волновое уравнение, носящее его имя. Н. Бор вскрыл истинный смысл волнового уравнения Шредингера. Он показал, что это уравнение описывает амплитуду вероятности нахождения частицы в данной области пространства. Чуть раньше (1925г.) Гейзенбергом была разработана квантовая механика. Формальные правила этой теории основаны на соотношении неопределённостей Гейзенберга: чем больше неопределённость пространственной координаты, тем меньше неопределённость значения импульса частицы. Аналогичное соотношение имеет место для времени и энергии частицы.

Таким образом, в квантовой механике была найдена принципиальная граница применимости классических физических представлений к атомным явлениям и процессам. В квантовой физике была поставлена важная проблема о необходимости пересмотра пространственных представлений лапласовского детерминизма классической физики. Они оказались лишь приближёнными понятиями и основывались на слишком сильных идеализациях. Квантовая физика потребовала более адекватных форм упорядоченности событий, в которых учитывалось бы существование принципиальной неопределённости в состоянии объекта, наличие черт целостности и индивидуальности в микромире, что и выражалось в понятии универсального кванта действия h.

Квантовая механика была положена в основу бурно развивающейся физики элементарных частиц, количество которых достигает нескольких сотен, но до настоящего времени ещё не создана корректная обобщающая теория. В физике элементарных частиц представления о пространстве и времени столкнулись с ещё большими трудностями. Оказалось, что микромир является многоуровневой системой, на каждом уровне которой господствуют специфические виды взаимодействий и специфические свойства пространственно - временных отношений. Область доступных в эксперименте микроскопических интервалов условно делится на четыре уровня: 1) уровень молекулярно - атомных явлений, 2) уровень релятивистских квантовоэлектродинамических процессов, 3) уровень элементарных частиц, 4) уровень ультрамалых масштабов, где пространственно - временные отношения оказываюстя несколько иными, чем в классической физике макромира. В этой области по-иному следует понимать природу пустоты - вакуум.

В квантовой электродинамике вакуум является сложной системой виртуально рождающихся и поглащающихся фотонов, электронно - позитронных пар и других частиц. На этом уровне вакуум рассматривают как особый вид материи - как поле в состоянии с минимально возможной энергией. Квантовая электродинамика впервые наглядно показала, что пространство и время нельзя оторвать от материи, что так называемая "пустота" - это одно из состояний материи.

Считается, что в вакууме, в любой точке пространства существуют «нерожденные» частицы и поля абсолютно всех возможных видов. Но их энергия недостаточно велика, чтобы они могли появиться в виде реальных частиц. Наличие бесконечного множества подобных скрытых частиц получило название нулевых колебаний вакуума. В частности, в вакууме во всех направлениях движутся фотоны всех возможных энергий и частот. Но так как эти частицы летят во всех направлениях, то их потоки взаимно уравновешивают друг друга, и мы ничего не ощущаем.

В тех случаях, когда однородность потока скрытых частиц нарушается, движется больше, чем в противоположном, нулевые колебания в вакууме начинают себя проявлять [4].

В физике микромира по одной из систематик на основе весьма общих теоретических соображений все элементарные частицы делятся на 3 класса: I класс включает в себя фотон - порцию электромагнитного излучения, II - электрон и нейтрино, III класс - андроны - самый многочисленный (их известно сейчас несколько сотен). К этому классу относятся, в частности, протон, нейтрон и мезон - частицы с массами промежуточными между массой электрона и массой протона. Значительная часть адронов - нестабильные частицы с очень коротким временем жизни. Особо коротко живущие частицы получили название резонансов [4].

Среди них имеются частицы, массы которых в несколько раз превосходят массу протона. И есть предположение, согласно которому «спектр масс» элементарных частиц вообще простирается до бесконечности. Если подобное предположение справедливо, то это значит, что при определенных условиях в ультрамалых пространственно-временных областях могут рождаться макроскопические и даже космические объекты.

Во всяком случае современная теория элементарных частиц такую возможность допускает.

Согласно одной из гипотез Вселенная, выйдя из исходного состояния, поначалу была вообще пустой, а все вещество и излучение возникли из вакуума.

Метагалактика образовалась в результате распада сверхтяжелого суперадрона с массой 1056 г. Это и был тот «первоатом», тот сверхплотный сгусток материи, который дал начало наблюдаемой Вселенной. Его распад на более мелкие адроны привел к образованию протоскоплений галактик, а последующие распады на адроны с еще меньшими массами - к образованию галактик [4].

Микромир и мегакосмос - две стороны одного и того же процесса, который мы называем Вселенной. Физика микромира проникла в область явлений, которые характеризуются масштабами порядка 10-15 см, астрофизика изучает объекты, для которых характерны расстояния вплоть до 1028 см. Но какими бы гигантскими размерами ни обладала та или иная космическая система, она в конечном итоге состоит из элементарных частиц. В то же время мы сами, как и все окружающие нас объекты, являемся частью мегакосмоса.

В работе "Относительность и проблема пространства"

Эйнштейн специально рассматривает вопрос о специфике понятия пространства в общей теории относительности. Согласно этой теории пространство не существует отдельно, как нечто противоположное "тому, что заполняет пространство" и что зависит от координат. "Пустое пространство, т.е. пространство без поля не существует. Пространство-время существует не само по себе, а только как структурное свойство поля". Для общей теории относительности до сих пор актуальной является проблема перехода от теоретических к физическим наблюдаемым величинам. Теория предсказала и объяснила три общелелятивистских эффекта: были предсказаны и вычислены конкретные значения смещения перегелия Меркурия, было педсказано и обнаружено отклонение световых лучей звёзд при их прохождении вблизи Солнца, был предсказан и обнаружен эффект


Страница: