Поверхностное натяжение
Рефераты >> Физика >> Поверхностное натяжение

Метод проволочной рамки.

Рис. 7

Простой прибор для грубых измерений такого рода показан на рис. 7. Опустим в воду медную проволочку, изогнутую, как показано на рисунке, зацепит проволочку чувствительным пружинным динамометром и будем очень медленно, без толчков поднимать ее вверх. Показание динамометра будет постепенно увеличиваться и достигнет максимального значения, когда из воды покажется водяная пленка, повисшая на проволочке. Отсчитав показание динамометра и приняв во внимание вес проволочки, мы найдем силу, которая растягивает пленку. При длине проволочки 5 см эта сила составляет около 0,0070 Н; отсюда

Для уменьшения влияния примесей нужно непосредственно перед опытом обработать рамку спиртом. Большое влияние на результаты оказывает так же то, насколько равномерно поднимается динамометр. Эту равномерность обычно достигают тем, что динамометр оставляют неподвижным, а уровень жидкости постепенно уменьшают. Выполняются серии опытов с проволочными рамками разной длины.

Метод кольца.

Рис. 8

Этот метод подобен методу проволочной рамки единственным отличием является то, что вместо рамки в нем используется металлическое кольцо рис.8. В этом случае длина пленки определяется как сумма длин окружностей внешней и внутренней сторон кольца.

Кроме элементарных методов определения коэффициента поверхностного натяжения жидкостей, которые были приведены выше существуют многие другие, более точные методы. некоторые из них описываются ниже.

Метод капиллярных волн.

Рис. 9

Капиллярные волны - это другое название известного всем явления «ряби» на поверхности жидкости. Образуются эти волны под влиянием небольших возмущений и их возникновение связано с силами поверхностного натяжения. Механизм образования капиллярных волн в общих чертах следующий. Под действием тех или иных внешних воздействий поверхность жидкости в данном месте «вдавливается», становясь вогнутой (рис.9, а), давление на слои жидкости под этой вогнутой поверхностью становится меньше (на величину ), чем давление в соседних слоях, где поверхность осталась плоской. Возникшая таким образом разность давлений заставляет жидкость из соседних слоев приливать под вогнутую поверхность, и жидкость снова поднимается к начальному уровню, но проходит его по инерции за счет накопленной кинетической энергии. Поверхность поэтому станет выпуклой, и давление, обусловленное кривизной ее поверхности, будет теперь направлено вниз (рис. 9, б).

Ясно, что такого рода колебания жидкости в одном месте заставит и соседние точки совершать такие же колебания. Это и значит - что явление имеет волновой характер. Капиллярные волны отличаются малой амплитудой и малой длиной волны. Из-за малости амплитуды можно пренебречь влиянием силы тяжести, которая может вызывать такое же действие (силе тяжести обязаны и происхождением крутые морские волны). Волны только в тех случаях и называются капиллярными, когда в их образовании участвуют только силы поверхностного натяжения и они образуются за счет значительной кривизны на гребне и впадине волны.

Расчет показывает, что параметры капиллярных волн связаны с коэффициентом поверхностного натяжения следующим уравнением:

(6)

где n - частота колебаний в волне, - длина волны и -плотность жидкости. Формула (6) и может быть использована для определения коэффициента поверхностного натяжения жидкости, плотность которой известна. Для этого необходимо измерить частоту колебаний и длину волны. Обычно измеряют скорость распространения волн, с которой частота колебаний связана простым соотношением.

Метод капли и пузырька.

Этот метод основан на наблюдении крупной капли жидкости на плоской поверхности и воздушного пузырька (тоже большого размера) в той же жидкости.

Рис. 10

Пусть на горизонтальной плоскости (рис. 10) образована большая капля исследуемой жидкости, настолько большая, что ее поверхность всюду, кроме краев, плоская, и пусть краевой угол у границы капли. Условием равновесия капли является равенство абсолютных значений сил, стремящихся превратить ее в тонкую пленку, и сил, стремящихся придать ей сферическую форму. Растянуть каплю в тонкую пленку стремится, во-первых, сила тяжести и, во-вторых, сила поверхностного натяжения на границе между жидкостью и твердой подложкой. Сферическую же форму капле стремится придать сила поверхностного натяжения на поверхности жидкости.

Рассмотрим вертикальное сечение капли, перпендикулярное к плоскости чертежа, и выделим в этом сечении площадку высотой h (высота капли) и длиной в 1 см. Благодаря силе тяжести на этом сечении действует гидростатическое давление. Среднее его значение равно , где - плотность жидкости и g - ускорение свободного падения. Сила же f, вызванная им, равна

(площадь выделенной площадки равна h!). Направление этой силы показано на рис. 10, а.

Горизонтальная составляющая f ' поверхностного натяжения на границе жидкости и подложки, отнесенная к единице длины, равна . Направлена она так же, как сила f, и вместе с ней стремится превратить каплю в пленку. Этим двум силам противостоит сила поверхностного натяжения на поверхности жидкости f", направленная против них и равная (на единицу длины). Таким образом, условие равновесия капли можно записать в виде


Страница: