История открытия элементарных частиц
Заметим, что возбуждённые состояния или резонансы не являются абсолютно новыми объектами физики. Ранее они были известны в атомной и ядерной физике, где их существование связано с составной природой атома (образованного из ядра и электронов) и ядра (образованного из протонов и нейтронов). Что касается свойств атомных состояний, то они определяются только электромагнитным взаимодействием. Малые вероятности их распада связаны с малостью константы электромагнитного взаимодействия.
Возбуждённые состояния существуют не только у нуклона (в этом случае говорят о его изобарных состояниях), но и у π-мезона (в этом случае говорят о мезонных резонансах).
«Причина появления резонансов в сильных взаимодействиях непонятна – пишет Фейнман, - сначала теоретики и не предполагали, что в теории поля с большой константой взаимодействия существуют резонансы. Позднее они осознали, что если константа взаимодействия достаточно велика, то возникают изобарные состояния. Однако истинное значение факта существования резонансов для фундаментальной теории остаётся неясной».
«Очарованные» частицы
В конце 1974г. две группы экспериментаторов (группа Тинга на протонном ускорителе в Брукхейвене и группа Б. Рихтера, работавшая на установке со встречными электронно-позитронными пучками в Стэнфорде) одновременно сделали важнейшее открытие в физике элементарных частиц: открыли новую частицу – резонанс с массой, равной 3,1 ГэВ (превышающей три массы протона).
Наиболее удивительным свойством этого резонанса оказалась его малая ширина распада – она равна всего 70кэВ, что соответствует времени жизни порядка 10-23с.
Общепринятое объяснение природы ψ-мезонов основано на гипотезе существования наряду со «стандарными» тремя u-,d- и s-кварками ещё четвёртого, с-кварком. От известных ранее кварков с-кварк отличается значением нового квантового числа, названного чармом. Поэтому с-кварк получил название чармового – или очарованного – кварка.
В 1974 были обнаружены и другие массивные (в 3—4 протонные массы) и в то же время относительно устойчивые y-частицы, с временем жизни, необычно большим для резонансов. Они оказались тесно связанными с новым семейством элементарных частиц — “очарованных”, первые представители которого (D0, D+, Lс) были открыты в 1976. В 1975 были получены первые сведения о существовании тяжёлого аналога электрона и мюона (тяжёлого лептона t).
За открытие ψ-частиц Тингу и Рихтеру в 1976 году была присуждена Нобелевская премия по физике.
В 1977г. были открыты более тяжёлые (по сравнению с ψ-частицами) нейтральные мезоны с массами порядка 10ГэВ, т.е. более чем в десять раз тяжелее нуклонов. Как и в случае ψ-мезонов, эти мезоны, получившие название «ипсилон»-мезонов, были наблюдены в реакции образования мюонных пар в протон-ядерных столкновениях.
Заключение
Таким образом, за годы, прошедшие после открытия электрона, было выявлено огромное число разнообразных микрочастиц материи. Для всех элементарных частиц характерны исключительно малые размеры: линейные размеры нуклона и пиона примерно равны 10-15 м. Теория предсказывает, что размер электрона должен быть порядка 10-19 м.
Масса же подавляющего большинства частиц сравнима с массой протона, которая в энергетических единицах близка к 1 ГэВ (1000 МэВ).
Мир элементарных частиц оказался достаточно сложно устроенным. Неожиданными во многих отношениях оказались свойства обнаруженных элементарных частиц. Для их описания, помимо характеристик, заимствованных из классической физики, таких, как электрический заряд, масса, момент количества движения, потребовалось ввести много новых специальных характеристик, в частности для описания странных элементарных частиц — странность (К. Нишиджима, М. Гелл-Ман, 1953), “очарованных” элементарных частиц — “очарование” (американские физики Дж. Бьёркен, Ш. Глэшоу, 1964); уже названия приведённых характеристик отражают необычность описываемых ими свойств элементарных частиц.
Изучение внутреннего строения материи и свойств элементарных частиц с первых своих шагов сопровождалось радикальным пересмотром многих устоявшихся понятий и представлений. Закономерности, управляющие поведением материи в малом, оказались настолько отличными от закономерностей классической механики и электродинамики, что потребовали для своего описания совершенно новых теоретических построений.
Изучение внутреннего строения материи и свойств элементарных частиц с первых своих шагов сопровождалось радикальным пересмотром многих устоявшихся понятий и представлений. Закономерности, управляющие поведением материи в малом, оказались настолько отличными от закономерностей классической механики и электродинамики, что потребовали для своего описания совершенно новых теоретических построений. Такими новыми фундаментальными построениями в теории явились частная (специальная) и общая теория относительности (А. Эйнштейн, 1905 и 1916; Относительности теория, Тяготение) и квантовая механика (1924—27; Н.Бор, Л. де Бройль, В. Гейзенберг, Э. Шредингер, М. Борн). Теория относительности и квантовая механика знаменовали собой подлинную революцию в науке о природе и заложили основы для описания явлений микромира. Однако для описания процессов, происходящих с элементарными частицами, квантовой механики оказалось недостаточно. Понадобился следующий шаг — квантование классических полей (т. н. квантование вторичное) и разработка квантовой теории поля. Важнейшими этапами на пути её развития были: формулировка квантовой электродинамики (П. Дирак, 1929), квантовой теории b-распада (Э. Ферми, 1934), положившей начало современной теории слабых взаимодействий, квантовой мезодинамики (Юкава, 1935). Непосредственной предшественницей последней была т. н. b-теория ядерных сил (И. Е. Тамм, Д. Д. Иваненко, 1934; Сильные взаимодействия). Этот период завершился созданием последовательного вычислительного аппарата квантовой электродинамики (С. Томонага, Р. Фейнман, Ю. Швингер; 1944—49), основанного на использовании техники перенормировки (Квантовая теория поля). Эта техника была обобщена впоследствии применительно к другим вариантам квантовой теории поля.
Квантовая теория поля продолжает развиваться и совершенствоваться и является основой для описания взаимодействий элементарных частиц У этой теории имеется ряд существенных успехов, и всё же она ещё очень далека от завершённости и не может претендовать на роль всеобъемлющей теории элементарных частиц Происхождение многих свойств элементарных частиц и природа присущих им взаимодействий в значительной мере остаются неясными. Возможно, понадобится ещё не одна перестройка всех представлений и гораздо более глубокое понимание взаимосвязи свойств микрочастиц и геометрических свойств пространства-времени, прежде чем теория элементарных частиц будет построена.
Литература
Ахиезер А.И., Рекало М.П. Биография элементарных частиц. -К.: Наукова Думка, 1983.
Дорфман Я.Г. Всемирная история физики с начала 19 века до середины 20 века. -М.,: 1979.