Измерения параметров электромагнитных волн на сверхвысоких частотах
Рефераты >> Физика >> Измерения параметров электромагнитных волн на сверхвысоких частотах

Погрешность измерения частоты резонансным частотомером зависит от точности настройки его в резонанс, от совершенства механической системы и градуировки, а также от влияния влажности и температуры окружающей среды.

Точность настройки в резонанс зависит от нагруженной добротности резонатора Qн погрешности индикаторного устройства:

(6)

где Δf -расстройка частоты, при которой амплитуда тока в А раз меньше, чем амплитуда тока при резонансе. Чтобы уменьшить Δf/f0, нужно выбирать А возможно более близкой к единице, т. е. необходимо иметь точный индикаторный прибор, отмечающий малые изменения тока. Так, если А= 1,02, то Δf/f0=1/ 10 Qн и при Qн =5000 получается Δf/f0=2·10-5.

В резонансных частотомерах с высокой добротностью определенную погрешность вносит механическая неточность настройки вследствие люфтов в приводе, ненадежности контактов между подвижными частями резонатора и т. п.

Чем на больший частотный диапазон рассчитаны частотомеры, тем больше погрешность измерений, связанная с неточностью считывания показаний. Эту погрешность можно рассчитать по формуле

(7)

где Δl -погрешность определения положения элемента настройки, обычно соответствующая цене одного деления и равная 0,5-10 мкм. Для того чтобы эта погрешность была одной и той же во всем рабочем диапазоне частот, необходимо иметь df/dl пропорциональное f0.

Резонансные частотомеры обычно градуируют путем сравнения их показаний с показаниями образцового прибора при различных частотах. Приемлемая точность получается в случае, если погрешность образцового частотомера совместно с погрешностью метода раз в пять меньше погрешности градуируемого прибора.

Изменение диэлектрической проницаемости воздуха, вызванное непостоянством его температуры и влажности, приводит к изменению резонансной частоты частотомера, а следовательно, и к погрешности измерений. В нормальных условиях эта погрешность достигает 5•10-5.

При изменении температуры окружающей среды меняются геометрические размеры резонатора, и это, в свою очередь, приводит к погрешности в измерении частоты. Погрешность от этой причины вычисляется по формуле

Δf/f0=-αkΔT (8)

где α-линейный температурный коэффициент расширения материала резонатора; k-коэффициент, зависящий от конструкции резонатора. Для цилиндрических резонаторов (k=1), изготовленных из меди, изменение температуры на 1°С дает погрешность в частоте 2•10-5.

В таблице указаны основные параметры некоторых резонансных частотомеров в режиме непрерывной генерации (НГ) и импульсной модуляции (ИМ). Погрешность измерений у всех приведенных приборов 0,05%. В последней колонке дано сопротивление коаксиального входного элемента или сечение прямоугольного волновода.

Рассмотренные в таблице приборы состоят из резонатора, переменного аттенюатора на 10 дБ, усилителя и индикатора. В частотомерах Ч2-31—Ч2-33 в качестве резонансной системы используются цилиндрические резонаторы, возбуждаемые на колебаниях вида НО112 а в других частотомерах - резонаторы коаксиального типа. Резонаторы включены по проходной схеме.

Параметры резонансных частотомеров

Тип прибора

Диапазон частот.1Тц

Чувствительность

ВЧ-тракт

Ч2-9А

Ч2-33

Ч2-32

Ч2-31

Ч2-37А

Ч2-36А

1,765-3,75

7-9

8,8-12,1

12-16,7

7,7-10,7

5,5-7,7

1мВт (НГ)

0,2 мкВт (ИМ)

5 мВт

5 мВт

5 мВт

0,5 мВт (НГ)

0,5 мкВт (ИМ)

0,5 мВт (НГ)

0,2 мВт (ИМ)

50 Ом

28,5х12,6 мм2

23х10 мм2

17х8 мм2

50 Ом

50 Ом

3. Гетеродинные частотомеры.

Наиболее точными измерителями частоты являются приборы, основанные на сравнении частоты исследуемого сигнала с частотой высокостабильного источника. Различают методы сравнения частот: нулевые биения, интерполяционный генератор и последовательное уменьшение частоты.

Рис. 8. Рис. 9.

На линейный элемент-смеситель (рис. 8) подаются ВЧ-сигнал с неизвестной частотой fx и сигнал с частотой fоп от опорного источника. На выходе смесителя получаются сигналы с этими же частотами, а также их гармоники и сигналы с частотами биений. Так как амплитуды гармонических составляющих невелики, а следовательно, невелики и сигналы их разностной частоты, то для индикации удобно использовать сигнал с частотой биений fб=fх–fоп=0. Отсюда и название метода-метод нулевых биений. На выходе нелинейного элемента включается индикатор, например телефон, пропускающий только сигналы звуковой частоты. Если плавно изменять частоту опорного генератора, то при fх-fоп<15000 Гц в телефоне появляется тон разностной частоты, который понижается три сближении fх и fоп.

На (рис. 9) показан характер изменения fб при фиксированной неизвестной частоте fх и перестраиваемой частоте fоп. При fб<16 Гц человеческое ухо перестает воспринимать низкие частоты, и погрешность вследствие этого может достичь 32 Гц. Для уменьшения погрешности следует воспользоваться «вилочным» отсчетом: запоминают на слух некоторый тон биений, например соответствующий частоте fоп1. Затем отмечают частоту fоп2, при которой в телефоне прослушивается тот же тон биений. Искомая частота fх есть среднее арифметическое отмеченных частот.

В реальных условиях в смесителе вырабатываются одновременно и гармонические составляющие основных сигналов, поэтому нулевые биения отмечают при равенстве частот гармоник nfх=m fоп, где n, т=1,2,3 . Чтобы исключить в этом случае погрешность в выборе гармоники, нужно предварительно каким-либо способом, например резонансным, ориентировочно измерить неизвестную частоту.

Если измеряемая частота лежит за пределами диапазона частот опорного генератора, то ее измеряют методом биений между гармоническими составляющими и сигналом основной частоты. Так, если fх<<fоп, то поочередно настраивают опорный генератор на нулевые биения с любыми двумя соседними гармоническими составляющими измеряемой частоты: fоп1=пfх и fоп2=(п±1)fх.


Страница: