Концепция современного естествознания информация
САМООРГАНИЗАЦИЯ КАК ОСНОВА ЭВОЛЮЦИИ.
В настоящее время концепция самоорганизацииполучает все большее распространение не только в естествознании, но и в социально гуманитарных разделах наук. Большинство наук изучает процессы эволюции систем и они вынуждены анализировать механизмы их самоорганизации. Мы под самоорганизацией будем подразумевать явления, процессы , при которых системы (механические, химические, биологические и т.д.) переходят на все более сложные уровни, характеризуемые своими законами, которые не сводятся только к законам предыдущего уровня. Такие примеры мы рассматривали в предыдущих разделах.
Концепция самоорганизации в настоящее время становится парадигмой. Обычно под парадигмой в науке подразумевают фундаментальную теорию, которая применяется для объяснения широкого круга явлений, относящихся к соответствующей области исследования. Примерами таких теорий могут служить классическая механика Ньютона, эволюционное учение Дарвина или квантовая физика. Сейчас значение понятия парадигмы еще больше расширилось, поскольку оно применяется не только к отдельным наукам, но и к междисциплинарным направлениям исследования. Типичным примером таких междисциплинарных парадигм являются возникшая полвека назад кибернетика и появившееся четверть века спустя синергетика. Под синергетикой в настоящее время подразумевают область научных исследований, целью которых является выявление общих закономерностей в процессах образования , устойчивости и разрушения упорядоченных временных и пространственных структур в сложных неравновесных системах различной природы (физических, химических биологических , экологических, социальных).
Определим, что лежит в основе кибернетики и синергетики. Кибернетика в основном занималась анализом динамического равновесия в самоорганизующихся системах. Она опиралась на принцип отрицательной обратной связи , согласно которому всякое отклонение системы корректируется управляющем устройством после получения сигнала информации об этом. Мы с вами сталкивались с таким примером, когда рассматривали знаки в уравнениях Максвелла, связывающих магнитные и электрические поля. Отрицательный знак в законе Фарадея и означал, что воздействие корректируется в сторону его уменьшения.
Рис.5.1
Другой пример. Сам отец кибернетики Н.Винер рассказывал, как возникла эта наука. Она возникла, когда стали изобретать самонаводящиеся зенитные системы. В этих системах встретились с такой ситуацией, когда неправильно поданный корректирующий сигнал приводил к выходу из строя всей системы наведения. В общем речь шла о том, что в системе, развивающейся по заданным законам, связь должна быть отрицательной. Пояснение вышесказанному дается рис. 5.1.
В синергетике исследуются механизмы возникновения новых состояний, структур и форм в процессе самоорганизации, а не сохранения или поддержания старых форм. Она опирается на принцип положительной обратной связи, когда изменение, возникшее в системе, не подавляется или корректируется, а наоборот, накапливаются и приводят к разрушению старой и возникновению новой системы. С точки зрения приведенного Н.Винером примера процесс саморазрушения зенитного комплекса мог быть описан с синергетических позиций. В то время этот процесс считался сугубо отрицательным и его старались подавить.
Рис.5.2
Для характеристики самоорганизующихся процессов применяют различные термины, начиная от синергетических и кончая неравновесными и даже автопоэтическими или самообновляющимися. Однако, все они выражают одну и туже идею. В дальнейшем у нас речь пойдет о самоорганизующихся системах, которые являются открытыми системами , находящимися вдали от точки термодинамического равновесия.
Идеи эволюции систем (космогонические, биологические, физические) получили широкое признание в науке. Однако,вплоть до настоящего времени, они формулировались интуитивными понятиями. Терминологический и научный подход развивается только в настоящее время.
В ранних теориях эволюций основное внимание обращалось на воздействие окружающей среды на систему. Мы более подробно это рассмотрим в теории эволюции Дарвина. В дарвинской теории теории происхождения новых видов растений и животных путем естественного отбора главный акцент делался на среду, которая выступала в качестве определяющего фактора. Разумеется, внешние условия среды оказывают огромное влияние на эволюцию, но это влияние не в меньшей степенизависит также и от самой системы, ее состояния и внутренней предрасположенности.
Приведем два примера. У нас есть водяной пар, при его охлаждении он переходит в новую структуру в виде кристаллов.Систем более организованных, чем хаотически двигающиеся молекулы воды. Но, этот процесс как выясняется, может происходить только тогда, когда в самой среде есть дополнительные центры кристаллообразования. Т. е. необходимым условием является сама среда и ее взаимосвязи. Другой пример. Лазеры. В лазерах хаотическое спонтанное излучение превращается в строго организованное индуцированное, следствием чего и появляется монохроматическое излучения.
В этих примерах мы не использовали точные характеристики упорядоченности или самоорганизованности структуры. В следующем разделе мы введем меру упорядоченности структуры энтропию и свяжем с ней протекание процессов.
С точки зрения парадигмы самоорганизации стало ясным, что условием развития не только живых, но и динамических систем вообще является взаимодействие системы и окружающей среды. Только в результате такого взаимодействия происходит обмен веществом, энергией и информацией между системой и ее окружением. Благодаря этому возникает и поддерживается неравновесность, а это в свою очередь приводит к спонтанному возникновению новых структур. Таких как кристаллы или лазерное излучение.
Таким образом , самоорганизация возникает как источник эволюции систем, так как она служит началом процесса возникновения качественно новых и более сложных структур в развитии системы.
Чтобы понять, почему самоорганизация выступает в основе эволюции, необходимо сказать несколько слов о флуктуациях и хаосе. Рассмотрим такую систему, как газ. Молекулы газа двигаются случайно, хаотично. Однако, в опытах с броуновским движением мы видим, что случайные, хаотичные движения молекул (микросистем) могут привести и к коллективному движению макроскопических частиц.
Флуктуации представляют собой случайные отклонения системы на микро уровне. Но результат их действия может сказаться и на макро уровне, причем непредсказуемым образом. В критической точке эволюции ,как правило, открывается несколько возможностей. Какой путь при этом выберет система, в значительной степени зависит от случайных факторов. И в целом поведение системы нельзя предсказать с полной достоверностью. Мы с вами рассматривали этот вопрос в разделе Физика возможного. Мы даже указали границы случайности в поведении системы. В микромире выбор поведения системы определен только с точностью до соотношения неопределенностей Гейзенберга.