Плазма - четвертое состояние вещества
Несмотря на кажущуюся простоту токамака, ни одно устройство подобного типа не дало положительного выхода энергии. Большие надежды возлагаются на проектируемый в настоящее время гигантский токамак ITER. На этой установке, если она будет сооружена к 2005 г., предполагаемая мощность выхода 1,5 • 109 Вт. Среди других проектов следует отметить два: стеллараторы и устройства инерциального удержания плазмы.
Магнитное поле сложной формы, удерживающее плазму в круговой камере токамака, противодействует собственному полю плазменного шнура, которое стремится изогнуть траекторию заряженных частиц плазмы. В стеллараторе (от лат. STELLA — Звезда») плазме позволили принять форму, какую она «хочет», и оставили только поле, сжимающее шнур. Вакуумная камера приобрела весьма причудливый вид, а множество магнитных катушек — довольно сложную форму. Эксперименты на стеллараторах идут в разных странах, но добиться нужной температуры и времени удержания плазмы пока не удалось.
Принципиально иным является метод инерциального удержания плазмы, основанный на инерции реакционной смеси, которая при мгновенном нагреве (например, лазерным импульсом) разлетается не сразу. Ампулу, где находится смесь дейтерия с тритием, облучают со всех сторон лазерными импульсами длительностью до 10-10 с и суммарной мощностью порядка 1020 Вт/см. Оболочка ампулы испаряется, расширяющиеся газы и световое давление сжимают её содержимое почти в 50 тыс. раз. Давление в смеси возрастает до 1 млн. атм, а её плотность — до 50—100 г/см3. При таких условиях начинается термоядерная реакция.
Но и на этом пути имеется ряд технологических трудностей, пока не позволяющих превратить экспериментальные лазерные установки в промышленные реакторы.
Плазменные движители.
Большинство реактивных двигателей используют энергию, выделяющуюся при химической реакции сгорания топлива. Они развивают большую тягу, но требуют сжигания значительного количества топлива. Скорость истечения газов из сопла составляет около 1 км/с. Если же добиться скорости плазменной струи свыше 1000 км/с, то расход рабочего вещества в сотни раз меньше, чем у химического двигателя с той же тягой. Для разгона плазмы используют различные схемы, в частности с применением скрещенных электрических и магнитных полей.
В современных плазменных движителях сила тяги пока невелика, но они уже используются в системе ориентирования космических кораблей. По таким же принципам работают магнитогидродинамические насосы для перекачки проводящих жидкостей (расплавленного металла).
Электростанции без турбин.
Более 70% электроэнергии во всем мире дают тепловые электростанции. В топках их паровых котлов сжигают нефть, газ, уголь, пар вращает турбину, связанную с электрическим генератором. По такой схеме работают и атомные электростанции, которые используют тепло, выделяющееся при делении тяжелых ядер. Главный недостаток тепловой электростанции – невысокий КПД (около 40%).
Однако получить электрическую энергию возможно и непосредственно с помощью плазмы. Если пропустить плазму (ионы и электроны) через магнитное поле, направленное перпендикулярно ее движению, то по закону электромагнитной индукции, возникнет сила, увлекающая заряды в сторону, которую определяет правило левой руки. Произойдет разделение зарядов: электроны двинутся в одну сторону, а ионы в другую.
Попадая на электроды, они создадут разность потенциалов. На этом принципе основано действие плазменного генератора электрического тока. Плазма, необходимая для его работы, образуется в камере сгорания, напоминающей реактивный двигатель.
Процессы, протекающие в плазменных генераторах, описываются законами магнитной гидродинамики, и потому такие аппараты называют магнитогидродинамическими или МГД – генераторами. Их эффективность зависит от электропроводности плазмы. Электропроводность увеличивают либо повышая рабочую температуру и, следовательно, степень ионизации плазмы, либо добавляя в камеру сгорания щелочные металлы, которые легко ионизуются. С одной стороны, чем выше температура плазмы, тем эффективнее работает МГД- генератор. Однако слишком сильно повышать температуру нельзя – материал, из которого сделаны стенки камеры, не выдержит нагрева. С другой стороны температура не должна быть меньше 1500 ºС, иначе степень ионизации плазмы становится незначительной и эффективность генератора резко падает. Плазма, выходящая из рабочего канала МГД – генератора, еще достаточно горячая, так что ею можно нагревать паровые котлы. Сегодня созданы и применяются МГД генераторы мощностью до 20 МВт с КПД 50 – 60%.
Предприятия нашего города: ОАО «Чайковская ремонтно-эксплуатационная база флота», ОАО «Воткинская ГЭС», завод «Стройдеталь», ОАО «Уралоргсинтез» используют плазменные резаки разной мощности.
Автоматическая резка плазменной струей
Промышленное применение плазменной дуги для резки началось в начале 50-х годов, и с течением времени плазменная резка завоевала все основные позиции, принадлежащие ранее другим способам механической или термической резки. Это способ, при котором газ под воздействием электрической дуги переходит в состояние плазмы и претерпевает эффект сжатия, проходя через охлажденную форсунку.
Способ плазменной резки используется для резки любых электропроводных материалов, но при этом качественные показатели резки (скорость, толщина и т.д.) зависят от используемого плазменного газа. Особый интерес плазменная резка представляет для предприятий, работающих с листовым металлом для выполнения следующих видов работ:
· резка нержавеющих сталей и цветных металлов: классический способ кислородной резки в этом случае не может быть применен вообще, а лазерная резка, помимо выше указанных недостатков, ограничена возможностью резки только определенной толщины. Возможности плазменной резки неограниченны и получаемое качество резки высокое.
· резка углеродистых марок стали малой и средней толщины (< 30 мм)
· серийное производство металлических деталей
· резка сложных геометрических форм, исключающая деформацию разрезаемого материала.
Положительные стороны плазменной резки:
· Возможность применения для резки большого количества материалов. У
· Универсальность
· широкие возможности резки: толщина резки: от 0.4 до 150 мм в зависимости от материала
· Высокая производительность
· сравнительно более высокая скорость резки
· простота в подготовке к работе и запуске
· стабильность качественных показателей резки
· при необходимости процесс может быть легко автоматизирован или роботизирован
· незначительная зона термического воздействия
· незначительное или полное отсутствие деформации разрезаемого материала
· нюанс: предназначено для резки только электропроводных материалов
В практике существуют различные виды плазменной резки, применяемые каждый в определенной области в зависимости от используемого плазменного газа:
1. Плазма с использованием нейтрального или раскисляющего газа Используемыми газами являются: азот, аргон или смесь аргона и водорода (иногда смесь азота и водорода). Применяется для резки цветных металлов и нержавеющей стали. Плазма аргон-водород используется для ручной резки.