Фундаментальные взаимодействия элементарных частиц
Несохранение лептонного числа делает возможным очень своеобразное явление — безнейтринный двойной -распад. В обычном -распаде происходит слабый переход
|
Рис. 14 Рис. 15
одного d-кварка в один u-кварк. В отличие от этого, в двойном -распаде два d-кварка одновременно переходят в два u-кварка. Если при этом антинейтрино испускаются (рис. 14), то распад называется двухнейтринным ; если же виртуальное нейтрино, испущенное одним кварком, поглощается другим кварком (рис. 15), то распад называется безнейтринным . Последний процесс возможен, только если нейтрино майораново, так как лептонный заряд в этом процессе не сохраняется. Оба этих распада идут во втором порядке теории возмущений по константе слабого взаимодействия GF, и поэтому ожидаемые времена полураспада, для них очень велики.
Вероятность двухнейтринного распада можно рассчитать более или менее надежно. (Она сильно меняется от ядра к ядру, поскольку очень чувствительна к величине энерговыделения.) В отличие от этого, вероятность безнейтринного распада надежно предсказать нельзя, пока остаются неизвестными степень и механизм несохранения лептонного числа.
Вопрос о том, какие частицы являются переносчиками слабого взаимодействия, долгое время был неясен. Понимания удалось достичь сравнительно недавно в рамках объединенной теории электрослабых взаимодействий - теории Вайнберга-Салама-Глэшоу. В настоящее время общепринято, что переносчиками слабого взаимодействия являются так называемые - и Z0-бозоны. Это заряженные и нейтральная Z0 элементарные частицы со спином 1 и массами, равными по порядку величины 100 mp.
Особенности слабого взаимодействия.
Отличительными признаками слабых процессов являются следующие.
1. Их слабость (медленность), выражающаяся в том, что вероятность этих процессов на много порядков меньше вероятностей сильных и электромагнитных процессов.
2. Малый радиус взаимодействия — как минимум на два порядка меньший, чем радиус сильного взаимодействия. Ни в одном из слабых процессов не удалось до 1982 г. об наружить каких-либо отклонений от точечного четырехфермионного взаимодействия.
3. Сильное, максимально возможное несохранение пространственной и зарядовой четностей. Так, в заряженные токи входят только левые компоненты спиноров, описывающих частицы, и только правые компоненты спиноров,описывающих античастицы.
4. Несохранение СР-четности.
5. Несохранение ароматов (странности, чарма и т. д.).
6. То обстоятельство, что только в слабых взаимодействиях принимают участие нейтрино.
Согласно электрослабой теории слабые взаимодействия заряженных токов обусловлены обменами W-бозонами, а нейтральных — Z-бозонами, подобно тому как взаимодействие электромагнитных токов обусловлено обменом фотонами. При этом слабость и малый радиус слабого взаимодействия объясняются тем, что, в отличие от фотонов, W- и Z-бозоны — очень тяжелые частицы. Остальные особенности слабого взаимодействия прямо заложены в предположении о форме исходных фермионных токов теории.
Тенденции объединения взаимодействий.
Мы видим, что на квантовом уровне все фундаментальные взаимодействия проявляют себя одинаковым образом. Элементарная частица вещества испускает элементарную частицу - переносчик взаимодействия, которая поглощается другой элементарной частицей вещества. Это ведет к взаимовлиянию частиц вещества друг на друга.
Безразмерная константа связи сильного взаимодействия может быть построена по аналогии с постоянной тонкой структуры в виде . Если сравнить безразмерные константы связи, то легко заметить, что самым слабым является гравитационное взаимодействие, а затем располагаются слабое, электромагнитное и сильное.
Если принять во внимание уже развитую объединенную теорию электрослабых взаимодействий, называемую сейчас стандартной, и следовать тенденции объединения, то возникает проблема построения единой теории электрослабого и сильного взаимодействий. В настоящее время созданы модели такой единой теории, получившие название модели великого объединения. Все эти модели имеют много общих моментов, в частности характерная энергия объединения оказывается порядка 1015 ГэВ, что значительно превосходит характерную энергию объединения электромагнитных и слабых взаимодействий. Отсюда вытекает, что прямое экспериментальное исследование великого объединения выглядит проблематичным даже в достаточно отдаленном будущем. Для сравнения отметим, что наибольшая энергия, достижимая на современных ускорителях, не превышает 103 ГэВ. Поэтому если и будут получены какие-либо экспериментальные данные относительно великого объединения, то они могут носить только косвенный характер. В частности, модели великого объединения предсказывают распад протона и существование магнитного монополя большой массы. Экспериментальное подтверждение этих предсказаний было бы грандиозным триумфом тенденций объединения.
Общая картина разделения единого великого взаимодействия на отдельные сильное, слабое и электромагнитное взаимодействия выглядит следующим образом. При энергиях порядка 1015 ГэВ и выше существует единое взаимодействие. Когда энергия становится ниже 1015 ГэВ, сильное и электрослабое взаимодействия отделяются друг от друга и представляются как различные фундаментальные взаимодействия. При дальнейшем уменьшении энергии ниже 102 ГэВ происходит отделение слабого и электромагнитного взаимодействий. В результате на масштабе энергий, характерных для физики макроскопических явлений, три рассматриваемых взаимодействия выглядят как не имеющие единой природы.
Заметим теперь, что энергия 1015 ГэВ отстоит не так далеко от планковской энергии
ГэВ,
при которой становятся существенными квантовогравитационные эффекты. Поэтому теория великого объединения с необходимостью ведет к проблеме квантовой гравитации. Если далее следовать тенденции объединения, мы должны принять идею о существовании одного всеобъемлющего фундаментального взаимодействия, которое разделяется на отдельные гравитационное, сильное, слабое и электромагнитное последовательно по мере понижения энергии от планковского значения до энергий, меньших 102 ГэВ.