Исследование активных сред дазеров
Рефераты >> Физика >> Исследование активных сред дазеров

Рис. 15.

Зависимость длительности одиночного УКИ t 0,5 , генерируемого РОС- лазером на бинарной смеси красителей от сечения поглощения молекул акцептора sa.

Рис. 16.

Заключение

Разобраны особенности моделирования импеданса разряда различными схемами замещения и вопрос о зависимости активного сопротивления разряда от времени. Исследовано влияние собственной индуктивности разряда на напряжение на разрядном промежутке. Разработана методика расчета систем возбуждения ХеСl лазера, выполненных по типу LC-контура и LC-инвертора, позволяющая рассчитывать форму импульса напряжения на лазерных электродах и энерговклад в активную среду в зависимости от параметров цепи возбуждения. На практике обычно измеряют напряжение на обострительной емкости, а не на разрядном промежутке. Наша методика позволяет по экспериментальным осциллограммам напряжения на обострительной емкости и разрядного тока достаточно точно расчетным путем получать импульс напряжения на лазерных электродах. Это дает возможность определить реальное Е/P в зависимости от времени на разряде и его среднего значения. Теоретические расчеты по кинетике плазмохимических реакций выполняются как правило при постоянном Е/P. Сейчас получено довольно много данных по эффективности образования XeCl* молекул в различных диапазонах Е/P. Поэтому, зная среднее значение Е/P, можно оценивать генерационные характеристики и эффективность работы лазера. Обычно работу системы возбуждения оценивают только по мощности энерговклада в активную среду. Но при одинаковой мощности энерговклада, эффективность системы возбуждения целиком определяется тем, насколько оптимальна величина Е/P для образования XeCl* молекул. Поэтому, при определении мощности энерговклада мы учитывали при каком Е/P основная часть энергии вкладывалась в разряд Изучено влияние параметров контуров возбуждения на энергетические характеристики эксимерных лазеров. Для систем возбуждения ХеСl лазера, выполненных по типу LC-контура, теоретически и экспериментально исследована зависимость разрядного напряжения и энергии генерации от величины обострительной емкости при всех режимах его работы. Показано, что для уменьшения потерь энергии в системе возбуждения необходимо применять многоканальную коммутацию. Наибольшая энергия генерации для LC-контура и LC-инвертора достигается в том случае, если параметры системы возбуждения таковы, что позволяют сформировать для возбуждения активной среды лазера сдвоенный импульс: короткий высоковольтный (~2U0) для формирования разряда и длинный (~ 10 кВ) для энерговклада в него. Полученные результаты нашли применение для конструирования систем возбуждения технологических электроразрядных эксимерных лазеров. Созданные эксимерные лазеры использованы для изучения воздействия УФ-излучения на полимерные материалы.

Выполненные исследования динамики населенностей рабочих уровней и плотности фотонов РОС-лазера на бинарных смесях красителей на коротковолновом краю спектра усиления акцептора при его невысокой концентрации показали, что основной механизм создания инверсии населенности – излучательный перенос энергии возбуждения. В величину положительной обратной связи в данном режиме работы вносят вклад как молекулы акцептора, так и молекулы донора.

Генерационные характеристики УКИ существенно зависят от концентрации акцепторных молекул. Увеличение концентрации акцепторных молекул приводит к значительному увеличению абсорбционных потерь для излучения донора и, как следствие, удлинению УКИ, генерируемых РОС-лазером. Влияние безызлучательного механизма передачи энергии возбуждения при этом постепенно увеличивается, а излучательного падает.

Объемная плотность фотонов УКИ излучения с ростом концентрации молекул акцептора увеличивается и достигает своего максимального значения, а затем уменьшается, когда абсорбционные потери становятся слишком высокими.

Диапазон концентраций в пределах которого РОС-лазер работает в указанном режиме достаточно узок и зависит от значений сечения поглощения и усиления молекул акцептора.

Список использованных источников

1. High-power XeCl discharge laser with a large active volume / T.Hasama, K.Miyazaki, K.Yamada e.a. // J.Appl. Phys. – 1987. – Vol.61, №.9. – P.4691–4693.

2. Верховский В.С., Мельченко С.В., Тарасенко В.Ф. Генерация на молекулах XeCl при возбуждении быстрым разрядом // Квант. электрон. – 1981. – Т.8, №2. – С.417–419.

3. Боровков В.В., Воронин В.В., Воронов С.Л. и др. Высокоэффективные газовые лазеры на основе трехэлектродной схемы формирования двойного разряда // Квант. электрон. – 1996. – Т.23, №1. – С.41–42.

4. Баранов В.Ю., Борисов В.М., Христофоров О.Б. Эксимерный электроразрядный лазер с плазменными электродами // Квант. электрон. – 1981. – Т.8, №1. – С.165–167.

5. Ануфрик С.С., Зноско К.Ф., Курганский А.Д. Низкоимпендансный генератор высоковольтных импульсов. // ПТЭ. – 1990. – №3. – С.99–101.

6. С.С.Ануфрик, А.П.Володенков, К.Ф.Зноско, А.Д.Курганский. Влияние параметров LC-инвертора на энергию генерации ХеС1-лазера. // Межвуз. сб. “Лазерная и оптико–электронная техника. – Минск: Университетское, 1992. – С.91–96.

7. С.С. Ануфрик, А.П. Володенков, К.Ф. Зноско, А.Д. Курганский. Влияние параметров LC-инвертора на выходноую энергию XeCl-лазера. // Лазерная физика и спектроскопия: Труды конференции под ред. А.А. Афанасьева.–Минск: Институт физики НАНБ, 1997.–т.1,–С.200-203.

8. Ануфрик С.С., Володенков А.П., Зноско К.Ф. Энергетические характеристики XeCl-лазера с возбуждением LC-инвертором // ЖПС.–1999.–т.66,№5.– С.702–707.

9. Ануфрик С.С., Зноско К.Ф., Курганский А.Д. Оптимизация двухконтурной схемы возбуждения ХеС1-лазера. // Межвуз. сб. “Лазерная и оптико–электронная техника. – Минск: Университетское, 1989. – С.87–91.

10. Anufrik S.S., Znosko K.F., Kurgansky A.D. XeCl-laser with LC-circuit excitation research // Abstracts III-rd Symposium on Laser Technology. Szcecin-Swinoujscie, 24–27 September 1990. – P.47–48.

11. Anufrik S.S., Znosko K.F., Kurgansky A.D. XeCl-laser with LC-circuit excitation research // SPIE. – 1991. – Vol.1391. – P.87–92.

12. Ануфрик С.С., Зноско К.Ф., Курганский А.Д. Влияние параметров контура возбуждения на длительность и форму импульса генерации ХеС1-лазера. // Межвуз. сб. “Лазерная и оптико-электронная техника. – Минск: Университетское, 1992. – С.86–90.

13. Ануфрик С.С., Зноско К.Ф., Володенков А.П., Исследование энергети­ческих и временных характеристик генерации XeCl-лазера // Программа и тезисы докладов XIV Литовско-Белорусского семинара.– Прейла: Литва.–1999.–с.16.

14. С.С.Ануфрик, К.Ф.Зноско, А.Д. Курганский. Влияние параметров LC-контура на энергию генерации XeCl-лазера.// Квантовая электроника. –1989- Т.16, №11.-с.2228-2231.

15. Курстак В.Ю., Рубинов А.Н., Рыжечкин С.А., Эфендиев Т.Ш. Генерация пикосекундных импульсов в голографическом РОС-лазере на красителях при наносекундном возбуждении // ЖПС. 1990. Т.52, №2 С. 202 - 206.


Страница: