Компенсационный метод измерения
Рефераты >> Физика >> Компенсационный метод измерения

Низкоомные компенсаторы рассчитаны на измерение на­пряжений менее 100 мв , сопротивление главной рабочей цепи их имеет величину от десятков до 2000 ом и ток в главной ра­бочей цепи 10 ~1—10~3 а.

Как высокоомные, так и низкоомные компенсаторы пред­назначены для поверки измерительных приборов и мер (шун­тов, делителей, измерительных катушек, нормальных элемен­тов и пр.), а также для выполнения всякого рода рабочих из­мерений.

Компенсационный метод относится к наиболее точным сре­ди методов и приборов, предназначенных для измерения на­пряжений: погрешность его может иметь порядок 0,01% и да­же 0,0011%.

В компенсаторе постоянного тока, как и в любом другом приборе, построенном на косвенном методе измерения, резуль­тирующая погрешность измерения (абсолютная или относи­тельная) является функцией частных погрешностей, вносимых каждым элементом схемы. В компенсаторе к таким элементам относятся нормальный элемент, гальванометр, сопротивления RH и R—чем точнее выполнены эти элементы, тем точнее ре­зультат измерения.

Своей высокой точности компенсаторы постоянного тока обязаны присутствию в схеме нормального элемента, э. д. с. которого известна с точностью до тысячных долей процента, с которым (косвенным образом) производится сравнение неиз­вестного напряжения или э. д. с.

Для облегчения расчета допустимой погрешности измере­ния большая часть современных компенсаторов снабжается формулой, указанной в инструкции к пользованию прибором. В этой формуле допустимые для данного компенсатора по­грешности, возникающие за счет несовершенства изготовле­ния элементов схемы, остающиеся постоянными в процессе из­мерений, объединяются в постоянный член уравнения и не требуют постоянного пересчета.

Переменной величиной в формуле является сопротивление Rbc, которое в процессе работы может принимать разные значения в зависимости от порядка измеряемого напряжения и от опыта экспериментатора.

При измерении ЭДС источников с большим внутренним сопро­тивлением или напряжений, действующих в высокоомных цепях, входное сопротивление магнитоэлектрических и электронных вольтмет­ров может быть недоста­точно большим, поэтому целесообразно использо­вать дифференциальный или компенсационный метод.

Дифференциальный метод основан на изме­рении разности между

Рис. 7.7. Схема измерения постоянного напря­жения дифференциальным методом

измеряемым и образцовым напряжением при их неполной компен­сации. Схема измерения представлена на рис. 7.7. Высокоомный электронный вольтметр у! с чувствительным пределом служит для измерения разностного напряжения между измеряемым Ux и образ­цовым UK напряжениями. Магнитоэлектрический аналоговый или цифровой вольтметр У2 используется для измерения образцового напряжения 1/к. Рекомендуется при UK — 0 измерить вольтмет­ром V1 ориентировочное значение Ux, а уже затем установить по вольтметру V2 удобное для отсчета напряжение UK. Измеряемое напряжение Ux при указанной полярности включения вольт­метра V1 определяется как Ux=UK +∆U

Дифференциальный метод обеспечивает высокую точность изме­рения напряжения. Погрешность измерения определяется в основ­ном погрешностью вольтметра, измеряющего L/K.

Входное сопротивление цепи

RВХ=UX/I=(UK+∆U)/(∆U/RV1)=RV1(UK/∆U+1) (7.7)

намного превышает входное сопротивление rvi вольтметра Vt. Гальванометрические компенсаторы служат для измерения ма­лых постоянных напряжений (порядка 10~8 В). Основными элементами гальванометрического компенсатора (рис. 7.8) являются: измерительный механизм магнитоэлектрического зеркального галь­ванометра G, образцовый резистор обратной связи Rк, фоторези­сторы ФR1 и ФR2, источники постоянного напряжения с Е1 = Е2, магнитоэлектрический микроамперметр.

На зеркальце гальвано­метра G направлен луч света от прожектора Пр. При отсутствии напряжения Vх луч света, отраженный от зеркала, одинаково освещает фотосопро­тивления, в результате ток Iк = 0. При подаче на вход измерителя напряжения Ux в цепи гальванометра G появ­ляется ток Iг, подвижная часть гальванометра повора­чивается на некоторый угол и происходит перераспределе­ние освещенности фоторези­сторов и изменение их соп­ротивлений.

Рис. 7.8

Согласно схеме включения фоторезисторов и полярности Uх сопротивление фоторезистора ФR1 уменьшится, а ФR2 увеличится. Через резистор RK потечет ток Iк, создавая на RK компенсирующее напряжение UK, почти равное измеряемому напряжению Ux. Значение тока Iк авто­матически изменяется в зависимости от изменения измеряемого напряжения Ux, но всегда так, что выполняется условие Ux ~ UK обеспечиваемое за счет небольших изменений тока Iг в цепи галь­ванометра:

Iг -= (Ux – UK)/(Rr + RK) = ∆U/(Rr + RK). (7.8)

Чем чувствительнее гальванометр, тем при меньших измене­ниях IГ произойдет соответствующее изменение тока Iк, нужное для выполнения условия UK ≈UX.

Повышение чувствительности достигается благодаря примене­нию специальной конструкции гальванометра, что обеспечивает при токах порядка 10~10— 10~14 А максимальный угол поворота подвижной части.

Значение компенсирующего тока Iк зависит от значений E1 = E2, относительного изменения фотосопротивлений и может достигать нескольких десятков микроампер.

Гальванический компенсатор имеет высокую чувствительность :при высоком входном сопротивлении.

Электрометрические компенсаторы — измерители напряжения, использующие электромеханический электрометр и имеющие весьма • высокое входное сопротивление (1016—1017 Ом). Они просты ,и удобны в эксплуатации. Электромеханический электрометр представляет собой чувствительный электростатический измерительный механизм, легкая подвижная часть которого подвешивается на тонкой упругой нити. В механизме применяется световой ука­затель положения подвижной части. Схема электрометрического компенсатора представлена на рис. 7.9, где электрический электро­метр, состоящий из двух неподвижных обкладок 1, 2 и подвижной обкладки 3, расположенной симметрично относительно неподвиж­ных.

Рис. 7,9, Схема электрометрического компенсатора

К подвижной обкладке прикреплено миниатюрное зеркальце. На неподвижные обкладки подается напряжение возбуждения UВ, что позволяет повысить чувствительность и возможность установки нуля показаний электрическим путем (при замкнутых зажимах Ux

посредством переменного резистора R0).

Принцип работы элект­рометрического компенса­тора аналогичен работе гальванометрического ком­пенсатора.

При подключении изме­ряемого напряжения Ux подвижная часть электро­метра Э повернется на не­который угол, что приве­дет к перераспределению световых потоков, освещаю­щих фоторезисторы ФRl

и ФR2 к появлению тока компенсации Iк и соответст­венно напряжения UК, уравновешивающего измеряемое напря­жение Ux. Подвижная часть электрометра будет отклоняться до тех пор, пока не наступит равенство напряжений Ux = UK. Так как сопротивление резистора обратной связи RK может быть незначительным, то ток Iк может быть сравнительно большим и измеряться микроамперметром. Входной ток компенсатора опре­деляется токами утечки, поэтому он мал, а следовательно, входное сопротивление велико (1016 — 1017 Ом). Кроме измерителей напря­жения строятся и высокочувствительные электрометрические изме­рители тока.


Страница: