Процессы интермитенсии в ядерных реакциях с большим поперечным импульсом
Рефераты >> Физика >> Процессы интермитенсии в ядерных реакциях с большим поперечным импульсом

ВВЕДЕНИЕ

Современная физика рассматривает два типа придельных процессов : Гаусовские и не-Гауссовские. Соответственно, мы делим исследуемые проблемы на две ветви. Первый класс включает слабо флуктуирующие процессы. Во втором случае рассматриваются сильно флуктуирующие. Такой подход чрезвычайно полезный и обеспечивает большие возможности для точных решений. Это позволяет получать оптимальные математические модели и решать проблемы количественных исследований, как для слабо флуктуирующих монофазных так и для сильно флуктуирующих многофазных систем. Этого достаточно для физического процесса и математической модели, которая может быть получена на его основании.

Последние годы засвидетельствовали достаточно высокую активность в исследовании сильно флуктуирующих не-Гаусовских процессов, как в теоретическом так и в практическом аспектах. Основная особенность подобных реальных объектов - масштабная инвариантность в все уменьшающихся доменах. Поэтому, первая надежда -что масштабная инвариантность или самоподобность могли бы открыть новые направления, в конечном счете ведущие к более глубокому проникновению в свойства изучаемых событий. Имеются два пути изучения сильно флуктуирующих динамических систем. Первый включает анализ поведения решения для набора дифференциально-разностных уравнений. Второй подход состоит в том, чтобы изучить экспериментальное или теоретическое поведение сильно флуктуирующих динамических переменных (или, возможно, некоторая функция ряда динамических переменных) все время уменьшающихся элементов фазового пространства. В этой работе используется второй путь.

Теория факториальных моментов

Пусть у нас имеется N событий в которых исследуемая величина (h) сильно флуктуирует (Рис.1). Этот процесс может быть описан путем деления соответствующего интервала D на M (для определенности) интервалов величиной

d=D/M (1)

Пусть p1 .pM вероятность нахождения частицы в соответствующем интервале. Флуктуация h описывается вероятностным распределением:

P (p1 . PM) dp1 . dpM (2)

Распределение (2) - сложное многомерное распределение, которое трудно изучать непосредственно. Эта проблема может быть решена путем изучения нормированных моментов этого распределения, определенных как:

Где последняя часть уравнения - нормирующий член.

Распределение P (p1 . PM) в (2) - теоретическое. Оно не может быть получено из непосредственных измерений. На эксперименте мы имеем дело с распределением величин n1 . nM

(4)

Где Q(n1 . nM) измеряемое распределение и П статистический шум (определяемый с помощью распределения Пуассона) который ”размазывает” P (p1 .pM) (теоретическое распределение), особенно для малого числа измерений.

“Динамическая” - в противоположность “статистической” - интерпретация флуктуации получила свое применение в методе факториальных моментов, в котором нормированные факториальные моменты теоретического распределения приравниваются к величинам нормированных факториавльных моментов экспериментального распределения .Этот метод предложили A. Bialas и R. Peschansky.

Где

(6)

В формуле (6) <Fq(d)> факториальный момент, показатель q показывает свойства корреляции порядка q для данного распределения.

На эксперименте распределение изучается для последовательности доменов фазового пространства d путем последовательного деления первоначального интервала D на М равных частей.

d=D/M

Для достижения статистической точности факториальных моментов Fq’ые индивидуальных ячеек определенные в формуле (6) , усреднены по событиям и по М. ячейкам (“ вертикальный анализ ”). Вертикально (по событиям) усредненные моменты могут быть определены как двойное среднее число:

(7)

Где nm (m=1, .,M)- множественность того ,бина и

средняя множественность в бине m.

В этой работе мы использовали модифицированный метод вертикального усреднения в котором моменты усреднены по начальным точкам расположения начальной области D.

(8)

где Nstep число малых ( step/D << 1 ) шагов расположения начальной точки области D в области пионизации. В качестве основной переменной в этой работе мы используем псевдобыстроту h = - ln tg q/2 вторичных частиц. Первоначальная область D равна 4.0, а M = 40.

Таким образом факториальные моменты выявляют динамические флуктуации и устраняют, или уменьшают насколько это возможно, статистические флуктуации- шум- возникающие из-за ограниченности числа частиц nm в попадающих в исследуемую ячейку m.

Можно показать, что для все время уменьшающихся доменов фазового пространства d вплоть до разрешающей способности, зависимость среднего факториального момента <Fq> от размеров бинов фазового пространства подчиняется степенному закону:

(9)

для фрактального распределения флуктуаций с перемежающейся вероятностью. Положительная константа j(q) называется показатель интермиттенси. Она характеризует силу эффекта.

Наоборот если рассматриваемое распределение гладкое(плотность вероятности конечная, на пример гаусоподобное распределение)

(10)

Практические прикладные программы

Физика элементарных частиц дает хорошую возможность подтвердить на эксперименте метод факториальных моментов. Было установлено, что имеется две разновидности PT - распределений в нуклон-ядерных и ядерно-ядерных взаимодействиях в TeV области энергии. Изучаемое поведение показателя интермитенси в дополнение к предыдущим результатам по PT распределениям дает нам сильное указание на существование второго класса взаимодействий с большим PT для всех вторичных частиц в событиях.

. Анализ измеренных величин поперечных импульсов каждого g - кванта во взаимодействиях с å E > 10 TeV показывает что 7 из них совершенно отличаются от остальных. Поперечные импульсы большинства g - квантов в этих 7 взаимодействиях были в несколько раз выше чем обычный средний поперечный импульс вторичных g - квантов, т.е., <PTg> ~ 0.2 GeV/c.

Интегральное распределение поперечных импульсов всех вторичных g - квантов дано на рис.2. Как видно из рисунка это распределение ясно состоит из двух экспонент:

Ng( >PTg ) = A1 exp( PTg/P01 ) + A2 exp( PTg /P02 ) (4)

Для первой ветви ( обычные взаимодействия ) P01 > ~ 0.2 GeV/c. ; для второй ветви, напротив, P02 > 0,8 ГэВ/c. В этих 7 “особых” взаимодействиях большинство надпороговых g - квантов имеют поперечный импульс PTg ³ 0.5 GeV/c. Поэтому, “особые” взаимодействия отличаются от обычных не тем, что имеют один или два g - кванта с очень большими PTg (что, в принципе также может вести к большим <PTg> ), но имеют подавляющее большинство g - квантов со сравнительно большими значениями PT.


Страница: