Ферромагнетики
Рефераты >> Физика >> Ферромагнетики

На рис. 9 показана форма петли гистерезиса для различных сортов железа и стали. По форме этой петли можно выбрать материал, который наилучшим образом подходит для той или иной практической задачи. Так, для изготовления постоянных магнитов необходим материал с большой коэрцитивной силой (сталь и особенно специальные сорта кобальтовой стали); для электрических машин и особенно для трансформаторов выгодны материалы с очень малой площадью петли гистерезиса, ибо они, как оказывается, меньше всего нагреваются при перемагничивании; для некоторых специальных приборов важны материалы, магнитное насыщение которых достигается при малых полях и т. д.

В отличие от тел парамагнитных и диамагнитных для ферромагнетиков величина М = Ф/Фо не остается постоянной, а зависит от напряженности внешнего намагничивающего поля Н. Эта зависимость для магнитного сплава (пермаллоя) и для мягкого железа показана на рис.10. Как мы видим, данная величина имеет малые начальные значения в слабых полях, затем нарастает до максимального значения и при дальнейшем увеличении поля в катушке снова уменьшается.

Важно отметить, что при достижении определенной температуры магнитная проницаемость ферромагнитных тел резко падает до значения, близкого к 1. Эта температура, характерная для каждого ферромагнитного вещества, носит название точки Кюри. {Речь идет не о том нагревании под действием вихревых токов Фуко, которое испытывают все металлы, помещенные в переменное магнитное поле, но о нагревании ферромагнитных тел, обусловленном их перемагничиванием и связанном со своеобразным внутренним трением в перемагничиваемом веществе.}

При температурах выше точки Кюри все ферромагнитные тела становятся парамагнитными. У железа точка Кюри равна 767°С, у никеля 360°С, у кобальта около 1130°С. У некоторых ферромагнитных сплавов точка Кюри лежит вблизи 100°С.

Рис. 10. Зависимость от Н у магнитного сплава пермаллоя (1) и у мягкого железа (2).

Периодическое перемагничивание ферромагнитного образца связано с затратой энергии на его нагревание. Площадь петли гистерезиса пропорциональна количеству теплоты, выделяющейся в единице объема ферромагнетика за один цикл перемагничивания.

При температурах ниже точки Кюри ферромагнитный образец разбит на малые области самопроизвольной (спонтанной) однородной намагниченности, называемые доменами. Линейные размеры доменов порядка (10-5 — 10-4 м). Внутри каждого домена вещество намагничено до насыщения .

В отсутствие внешнего магнитного поля магнитные моменты доменов ориентированы в пространстве так, что результирующий магнитный момент размагниченного образца равен нулю.

Намагничивание ферромагнитного образца во внешнем магнитном поле состоит, во-первых, в смещении границ доменов и росте размеров тех доменов, векторы магнитных моментов которых близки по направлению к магнитной индукции В поля, и, во-вторых, в повороте магнитных моментов целых доменов по направлению поля В. В достаточно сильном магнитном поле достигается состояние магнитного насыщения, когда весь образец намагничен по полю и его намагниченность J не изменяется при дальнейшем увеличении В.

Измерения гиромагнитного отношения для ферромагнетиков показали, что элементарными носителями магнетизма в них являются спиновые магнитные моменты электронов . В современной квантово-механической теории ферромагнетизма объяснена природа самопроизвольной намагниченности ферромагнетиков и природа возникновения сильного внутреннего поля .

Ферромагнитными свойствами могут обладать кристаллы веществ, атомы которых имеют не заполненные электронами внутренние оболочки , так что проекция результирующего спинового магнитного момента на направление магнитного поля отлична от нуля. При определенных условиях благодаря обменному взаимодействию между электронами соседних атомов, имеющему особую квантово-механическую природу, оказывается устойчивым такое состояние ферромагнетика, когда спины электронов всех атомов в пределах одного домена ориентированы одинаково. Таким образом возникает спонтанное намагничивание доменов до насыщения. При нагревании ферромагнетика до точки Кюри тепловое движение разрушает области спонтанной намагниченности и вещество теряет свои особые магнитные свойства.

При отсутствии внешнего магнитного поля магнитные моменты отдельных до­менов ориентированы хаотически и компенсируют друг друга, поэтому результиру­ющий магнитный момент ферромагнетика равен нулю и ферромагнетик не намаг­ничен. Внешнее магнитное поле ориентирует по полю магнитные моменты не отдель­ных атомов, как это имеет место в случае парамагнетиков, а целых областей спонтан­ной намагниченности. Поэтому с ростом Н намагниченность J и магнит­ная индукции В уже в довольно слабых полях растут очень быстро. Этим объясняется также увеличение м ферромагнетиков до максимального значения в слабых полях. Эксперименты показали, что зависимость В от Н не является такой плавной, а имеет ступенчатый вид. Это свидетельствует о том, что внутри ферромагнетика домены поворачиваются по полю скачком.

При ослаблении внешнего магнитного поля до нуля ферромагнетики сохраняют остаточное намагничение, так как тепловое движение не в состоянии быстро дезориен­тировать магнитные моменты столь крупных образований, какими являются домены. Поэтому и наблюдается явление магнитного гистерезиса. Для того чтобы .ферромагнетик размагнитить, необходимо приложить коэрцитивную силу; размаг­ничиванию способствуют также встряхивание и нагревание ферромагнетика. Точка Кюри оказывается той температурой, выше которой происходит разрушение доменной структуры.

Существование доменов в ферромагнетиках доказано экспериментально. Прямым экспериментальным методом их наблюдения является метод порошковых фигур. На тщательно отполированную поверхность ферромагнетика наносится водная суспензия мелкого ферромагнитного порошка (например, магнетита). Частицы оседают преиму­щественно в местах максимальной неоднородности магнитного поля, т. е. на границах между доменами. Поэтому осевший порошок очерчивает границы доменов и подобную картину можно сфотографировать под микроскопом. Линейные размеры доменов оказались равными lO-4—lO-2 см.

Дальнейшее развитие теории ферромагнетизма Френкелем и Гейзенбергом, а также ряд экспериментальных фактов позволили выяснить природу элементарных носителей ферромагнетизма. В настоящее время установлено, что магнитные свойства ферромагнетиков определяются спиновыми магнитными моментами элект­ронов. Установлено также, что ферромагнитными свойствами могут обладать только кристаллические вещества, в атомах которых имеются недостроен­ные внутренние электронные оболочки с нескомпенсированными спинами. В подо­бных кристаллах могут возникать силы, которые вынуждают спиновые магнитные моменты электронов ориентироваться параллельно друг другу, что и приводит к возникновению областей спонтанного намагничения. Эти силы, называемые обменными силами, имеют квантовую природу — они обусловлены волновыми свойствами электронов.


Страница: