Электрические свойства сплавов типа твердых растворов
Рефераты >> Физика >> Электрические свойства сплавов типа твердых растворов

Подпись: 

Рисунок 5.
Зависимость электросопротивления сплава Cu3Au от степени деформации
При наклепе и отжиге твердых растворов, даже слабо концентрированных, их электросопротивление изменяется в большей степени, чем сопротивление чистых металлов в тех же условиях.

При отжиге наклепанной a - латуни с 35.11 % Zn показано, что уменьшение сопротивления происходит в три стадии: при 90 – 120, 180 – 240, 300 – 3600 С. Было обнаружено, что уже при отдыхе, до начала рекристаллизации, электросопротивление уменьшается почти до исходного значения.

Еще более значительно изменение электрического сопротивления при наклепе упорядоченных твердых растворов. При наклепе порядок в расположении атомов вследствие относительного перемещения пачек скольжения и отдельных атомных плоскостей нарушается. при этом электросопротивление повышается на десятки, а иногда и на сто с лишним процентов. Из рисунка 5 видно, что электросопротивление сплава Cu3Au повышается тем больше, чем больше степень обжатия. При значительной деформации сопротивление отожженного сплава приближается к сопротивлению закаленного сплава, находящегося в неупорядоченном состоянии. На рентгенограммах, снятых с предварительно отожженных образцов, при этом исчезают сверхструктурные линии, что является доказательством исчезновения упорядоченности твердого раствора. Если при проведении опыта наблюдается значительное увеличение сопротивления при наклепе однофазного сплава, то это указывает на наличие в нем упорядочения.

Таким образом, изучение электрического сопротивления и изменения его при наклепе имеет большое значение при исследовании упорядочивающихся твердых растворов.

Неоднородные твердые растворы

Сформулированное правило С(1-С) об изменении избыточного электросопротивления твердого раствора с концентрацией примесей справедливо для всех идеально неупорядоченных твердых растворов, то есть растворов, в которых ионы примеси распределены по узлам решетки растворителя строго статистически.

В ряде сплавов, однофазных по данным металлографического и рентгеновского анализов, были обнаружены отклонения от этого правила. Линде исследовал обширное число твердых растворов на основе меди, серебра или золота. Автор выразил зависимость избыточного электросопротивления твердого раствора Dr от концентрации растворенной примеси С в виде

Dr/с=x(1-Lс/100)

где x=lim(Dr/с)с®0; L - коэффициент, характеризующий степень отклонения от правила С(1-С).

При L=1 концентрационная зависимость избыточного электросопротивления твердого раствора удовлетворяет этому правилу.

В ряде сплавов, содержащих в своем составе переходные металлы, однофазные по данных металлографического и рентгеновского анализа, было обнаружено, что при наклепе их электросопротивление падает. Структурное состояние таких сплавов было названо К-состоянием.

По-видимому, это состояние характеризуется внутрикристаллической неоднородностью твердого раствора.

Изучение физических свойств достоверно указывает на наличие особого фазового превращения и особой структуры некоторых твердых растворов. К ним относятся никельхромовые, никельмедные, никельмедьцинковые, железоалюминевые и другие.

Было обнаружено также, что в сплавах, в которых электрическое сопротивление при наклепе уменьшается, оно снова возрастает при рекристаллизационном отжиге. Эти изменения нельзя связать с нарушением при наклепе порядка в расположении атомов и восстановлением его при отжиге; при разрушении упорядоченной структуры электросопротивление должно было бы возрастать, а при рекристаллизации – уменьшаться.

Подпись: Рисунок 6.
Влияние наклепа на электрическое сопротивление 
Ni-Fe-Mo сплавов
Необычное изменение электросопротивления наблюдается также и при температурной обработке железоникелевых сплавов, содержащих до 6% молибдена.

На рисунке 6 приведено изменение удельного электросопро-тивления однофазных сплавов состава Ni3Fe (приблизительно) с различным содержанием молибдена (от 0 до 6%) в зависимости от степени обжатия при холодной деформации. В исходном состоянии были отожжены с очень медленным охлаждением от 550 до 200°С (в течении недели) для получения структуры, стабильной при низкой температуре.

Из рис.6 следует, что электросопротивление сплава Ni3Fe без Мо увеличивается на 35% после холодной деформации, что соответствует разупорядочению. Поскольку холодная деформация приводит вновь к статистическому распределению атомов по узлам решетки, принимается, что увеличение электросопротивления после сильного обжатия,, грубо говоря, пропорционально степени порядка, существовавшей в сплаве после отжига, до наклепа. Уже при 0,5% Мо значительно уменьшается исходная степень порядка сплава Ni3Fe, а при 1% Мо почти полностью отсутствует упорядоченное расположение атомов.

Предполагается, что при низких температурах под влиянием Мо упорядочение Ni3Fe устраняется и заменяется сегрегацией в виде скоплений размером порядка длины свободного пробега, причем увеличивается остаточное сопротивление. Переход к сегрегации происходит непрерывно с возрастанием содержания молибдена.

Деформация «разгоняет» эти скопления и приводит к статистическому распределению атомов, причем электросопротивление понижается; последующий отпуск при температуре до 450°С снова его восстанавливает. Нагрев до более высоких температур, также как и в упорядочивающемся сплаве Ni3Fe, сообщает решетке твердого раствора статистическую однородность.

Усиление рассматриваемого эффекта с концентрацией третьего компонента принципиально отличает этот процесс от упорядочения.

Исследованием кинетики превращения однородного раствора в неоднородный (сплав с 79% Ni, 5% Мо, 16% Fe) установлено, что энергия активации этого процесса равна 294000 Дж/моль. Эта величина и общие черты описываемого превращения свидетельствуют о том, что оно происходит обычным диффузионным путем. Об этом говорит также и обратимость изменений электросопротивления при наклепе и рекристаллизации, при закалке и отпуске.

Судя по изменению электросопротивления, неоднородный твердый раствор найден в сплавах как с объемноцентрированной, так и с гранецентрированной кубической решеткой.

Влияние ближнего порядка на электрическое сопротивление.

Рассмотрим сначала причины изменения электросопротивления при повышении температуры отжига предварительно хорошо отожженных образцов. Хорошо отожженные образцы получались путем медленного (со скоростью » 50 град/час) охлаждения образцов после отжига их при 600-800 °С. В таких образцах степень порядка соответствует примерно состоянию, достигаемому отжигом при 200°С (ниже диффузные процессы идут крайне медленно). Учет разницы в a (в a-Cu – A1F1/G » 4%, F2/G » 3%, F3/G » 1,3%, но, поскольку a3 в отожженных сплавах весьма мало и С2/С1=1/2) повышает электросопротивление на 1-3% при повышении температуры отжига до 400°С. кроме того, за счет понижения n*, достигающего 11-12%, рост электросопротивления должен составить » 8%. Таким образом, суммарное повышение электрического сопротивления при повышении температуры отжига до 400°С должно достигать 9-11%. Измеренный же экспериментально эффект составляет » 5-6%. Это различие между расчетом и экспериментом может быть обусловлено рассасыванием неоднородностей, возможно возникших в a-Cu-A1 при медленном охлаждении образцов, а возможно, и влиянием фоновой части электросопротивления.


Страница: