Элементарная теория радуги
Сколько бывает радуг?
Вряд ли найдется человек, который не любовался бы радугой. Появившись на небосводе, она невольно приковывает внимание. А сколько легенд и сказаний связано с радугой у разных народов! В русских летописях радуга называется « райской дугой » или сокращенно « райдугой ». В Древней Греции радугу олицетворяла богиня Ирида («Ирида» и означает « радуга »). По представлениям древних греков, радуга соединяет небо и землю, и Ирида была посредницей между богами и людьми. В русский язык вошли и другие слова с тем же греческим корнем: ирис — радужная оболочка глаза, иризация, иридий.
Радуга всегда связывается с Дождем. Она может появиться и перед дождем, и во время дождя, и после него, в зависимости от того, как перемещается облако, дающее ливневые осадки. Об этом говорят и народные поговорки: „Радуга-дуга! Перебей дождя!", „Радуга-дуга! Принеси нам дождь!"
Первая попытка объяснить радугу как естественное явление природы была сделана в 1611 г. архиепископом Антонио Доминисом. Его объяснение радуги противоречило библейскому, поэтому он был отлучен от церкви и приговорен к смертной казни. Антонио Доминис умер в тюрьме, не дождавшись казни, но его тело и рукописи были сожжены.
Обычно наблюдаемая радуга — это цветная дуга угловым радиусом 42°, видимая на фоне завесы ливневого дождя или полос падения дождя, часто не достигающих поверхности Земли. Радуга видна в стороне небосвода, противоположной Солнцу, и обязательно при Солнце, не закрытом облаками. Такие условия чаще всего создаются при выпадении летних ливневых дождей, называемых в народе « грибными » дождями. Центром радуги является точка, диаметрально противоположная Солнцу,— антисолярная точка. Внешняя дуга радуги красная, за нею идет оранжевая, желтая, зеленая дуги и т. д., кончая внутренней фиолетовой.
Сколько радуг можно увидеть одновременно?
Неискушенный наблюдатель видит обычно одну радугу, изредка две. Причем вторая радуга, концентрическая с первой, имеет угловой радиус около 50° и располагается над первой. Вторая радуга более широкая, блеклая, расположение цветов в ней обратное первой радуге: внешняя дуга у нее фиолетовая, а внутренняя красная.
Самое удивительное, что большинство людей, наблюдавших радугу много раз, не видят, а точнее не замечают дополнительных дуг в виде нежнейших цветных арок внутри первой и снаружи второй радуг (т. е. со стороны фиолетовых краев радуг). Эти цветные дуги (их обычно три-четыре) неправильно названы дополнительными — в действительности они такие же основные (или главные), как первая и вторая радуги.
Эти дуги не образуют целого полукруга или большой дуги и видны только в самых верхних частях радуг, т. е. вблизи « вершин », или « макушек », основных радуг, когда же последние переходят в вертикальное положение (или близкое к нему), дополнительные дуги пропадают. Именно в этих дугах, а не в основных, сосредоточено наибольшее богатство чистых цветовых тонов, которое и породило выражение „все цвета радуги".
Радуги можно увидеть около водопадов, фонтанов, на фоне завесы капель, разбрызгиваемых поливальной машиной или полевой поливальной установкой. Можно самому создать завесу капель из ручного пульверизатора и, встав спиною к Солнцу, увидеть радугу, созданную собственными руками. У фонтанов и водопадов случалось видеть, кроме описанных двух основных и трех-четырех дополнительных дуг к каждой основной, еще одну или две радуги вокруг Солнца.
Как возникает радуга?
Откуда берется удивительный красочный свет, исходящий от дуг радуги? Все радуги — это солнечный свет, разложенный на компоненты и перемещенный по небосводу таким образом, что он кажется исходящим от части небосвода, противоположной той, где находится Солнце.
Научное объяснение радуги впервые дал Репе Декарт в 1637 г. Декарт объяснил радугу на основании законов преломления и отражения солнечного света в каплях выпадающего дождя. В то время еще не была открыта дисперсия — разложение белого света в спектр при преломлении. Поэтому радуга Декарта была белой.
Спустя 30 лет Исаак Ньютон, открывший дисперсию белого света при преломлении, дополнил теорию Декарта, объяснив, как преломляются цветные лучи в каплях дождя. По образному выражению американского ученого А. Фразера, сделавшего ряд интересных исследований радуги уже в наше время, „Декарт повесил радугу в нужном месте на небосводе, а Ньютон расцветил ее всеми красками спектра".
Несмотря на то что теория радуги Декарта — Ньютона создана более 300 лет назад, она правильно объясняет основные особенности радуги: положение главных дуг, их угловые размеры, расположение цветов в радугах различных порядков.
Для объяснения радуги мы пока и ограничимся теорией Декарта — Ньютона, которая подкупает своей удивительной наглядностью и простотой.
Лучи радуги
Итак, пусть параллельный пучок солнечных лучей падает на каплю (рис. 1). Ввиду того что поверхность капли кривая, у разных лучей будут разные углы падения. Они изменяются от 0 до 90°. Проследим путь луча, упавшего в точку А, его угол паления обозначим i . Преломившись под углом преломления r , луч входит в каплю и доходит до точки В. Часть энергии луча, преломившись, выходит из капли, часть, испытав внутреннее отражение в точке 5, идет внутри капли до точки С. Здесь снова часть энергии луча, преломившись, выходит из капли, а некоторая часть, испытав второе внутреннее отражение, доходит до точки О и т. д. В .принципе луч может испытывать любое число (и), внутренних отражений, а преломлений у каждого луча два — при входе и при выходе из капли.
Рис. 1. Ход светового луча в капле при образовании первой и второй радуг.
Обозначим Dk угол отклонения любого луча после прохождения им капли. Тогда из рис.1 очевидно, что
Dk = 2( i - r) + k (p – 2r), (1)
здесь k — число внутренних отражений луча.
Параллельный пучок лучей, падающий на каплю, по выходе из капли оказывается сильно расходящимся (рис. 2). Концентрация лучей, а значит, и их интенсивность тем больше, чем ближе они лежат к лучу, испытавшему минимальное отклонение. Путь минимально отклоненного луча обозначен на рисунке пунктиром. Только минимально отклоненный луч и самые близкие к нему лучи обладают достаточной интенсивностью, чтобы образовать радугу. Поэтому этот луч и называют лучом радуги.
Рис.2. Преломление пучка световых лучей в капле.
Минимальное отклонение луча, испытавшего одно внутреннее отражение (k = 1), по теории Декарта равно:
D1 = p +2( i – 2r). (2)
Каждый белый луч, преломляясь в капле, разлагается в спектр, и из капли выходит пучок расходящихся цветных лучей. Поскольку у красных лучей показатель преломления меньше, чем у других цветных лучей, то они и будут испытывать минимальное отклонение по сравнению с остальными. Минимальные отклонения крайних цветных лучей видимого спектра красных и фиолетовых оказываются следующими: D1k= 137°30' и D1ф = 139°20'. Остальные цветные лучи займут промежуточные между ними положения.