Магнитострикция
Указанный выше сплав носит название инвара (не изменяющего свои размеры при нагреве) и давно применяется в часовой и приборостроительной промышленности. В настоящее время существует большое число сплавов типа инвар; природа их малого коэффициента теплового расширения магнитная. Явление компенсации коэффициента теплового расширения спонтанной магнитострикцией получило название инвар-эффекта. В гадолинии инвар-эффект анизотропен, то есть различен по разным осям гексагонального кристалла.
Магнитострикция (магнитодипольная и одноионная)
Кроме рассмотренной выше обменной магнитострикции в ферромагнетиках при приложении поля Н возникает анизотропная магнитострикция. Она сопутствует процессам намагничивания в полях более слабых, чем те, в которых проявляется парапро-цесс. Анизотропия ее состоит в том, что X по различным осям кристалла имеют разные величины и знаки. Характерная черта анизотропной магнитострикции состоит в том, что при ней меняется форма образца (при ничтожно малом изменении объема).
В теории рассматриваются два механизма анизотропной магнитострикции: 1) магнитодипольный и 2) одноионный. В первом из них рассчитывается магнитное взаимодействие магнитных моментов Мат, расположенных в узлах кристаллической решетки, при этом магнитные моменты Мат уподобляются магнитным диполям (то есть маленьким магнитикам с северным и южным полюсами).
Магнитодипольное взаимодействие в кристаллах кубической симметрии вдоль ребра и диагоналей куба будет различным, следовательно, равновесные расстояния между магнитными атомами в этих направлениях будут также различными, то есть магнитострикции будут разными по величине в этих направлениях. Однако данный механизм дает малый вклад в анизотропию магнитострикции ферромагнетиков.
|
Как показали исследования, главным для анизотропной магнитострикции является одноионный механизм. Определяющую роль в нем играет наличие у магнитного атома или иона (то есть заряженного атома) орбитального магнитного момента Морб. Согласно теории, в этом случае электронное орбитальное облако приобретает несферическую (анизотропную) конфигурацию (на рис. 3, а оно условно изображено в виде эллипсоида). Наглядно механизм возникновения анизотропной магнитострикции можно представить следующим образом. Пусть анизотропный магнитный ион находится в кристаллической решетке в окружении других ионов, создающих электростатическое поле (оно обычно называется кристаллическим).
На рис. 3 условно показаны голубыми линиями кристаллические поля, создаваемые окружающими ионами, отражающими локальную симметрию кристалла. При приложении поля Н магнитный момент иона Мат = Мсп + Морб ориентируется в направлении Н и одновременно с ним поворачивается анизотропное электронное облако иона, которое возмущает электростатическое поле окружающих ионов. В результате кристаллическая решетка испытывает анизотропные деформации в соответствии с симметрией кристалла. Эти деформации есть не что иное, как анизотропная магнитострикция.
Подобного вида анизотропная магнитострикция очень велика в редкоземельных металлах (не всех), так как их ионы обладают большими величинами орбитальных моментов Морб (см. далее об этом подробнее).
Редкоземельный металл гадолиний не имеет орбитального момента (Морб = 0) и его атомный момент Мат содержит только спиновую составляющую (Мат = Мсп). Вследствие этого электронное облако его иона имеет сферическую форму. Как следует из рис. 3,б, при приложении поля Н по -ворот электронного облака не приводит к возмущению кристаллического поля окружающих ионов, следовательно, здесь не работает механизм одно-ионной магнитострикции. В Gd и его соединениях наблюдаемая анизотропная магнитострикция, по-видимому, обязана магнитодипольному механизму.
Ситуация с анизотропной магнитострикцией в металлах Fe, Ni, их сплавах и ферритах близка к случаю Gd. Намагничивание в них происходит в основном за счет спиновых моментов и в небольшой степени за счет орбитальных моментов. В этих магнетиках кристаллическое поле так сильно воздействует на Морб, что они как бы закрепляются в решетке и теряют способность вращаться в направлении магнитного поля. Это явление принято называть замораживанием орбитального момента. Однако в некоторых из этих соединений замораживание Морб происходит не полностью. Поэтому в данных веществах (например, ферритах) возникает анизотропная магнитострикция одноионной природы, но много меньшая по величине, чем в редкоземельных магнетиках.
Гигантская анизотропная магнитострикция
В 1961—1965 годах было установлено, что анизотропная магнитострикция редкоземельных металлов тербия Tb, диспрозия Dy, их сплавов и ферритов-гранатов при низких температурах превышает анизотропную магнитострикцию железа, кобальта, никеля и их сплавов в десятки, сотни и даже тысячи раз (в монокристаллах). Несколько позд такая гигантская магнитострикция[1] была обнаружена в так называемых интерметаллических соединениях TbFe2 и DyFe2. В них эта магнитострикция реализуется не только при низких температурах, но и выше комнатных температур.
В табл. 1 приведены результаты измерения продольной магнитострикции насыщения (λs)11 (то есть в полях H = Hs) при температуре жидкого азота 78 К в поликристаллах Tb и Dy (для сравнения даны соответствующие значения (λs)11 для поликристаллов Fe, Co и Ni).
Огромных величин достигает λs в гексагональных кристаллах Tb и Dy (табл. 2). При этом она особенно велика вдоль гексагональной оси c и несколько меньше вдоль a. (На рис. 4, а показаны направления этих осей.) Видно, что эти значения в сотни раз больше, чем в кристалле Ni. (На рис. 4, б показаны направления осей кубического кристалла Ni символами [111], [100] и [110].)
На рис. 5 представлены кривые магнитострикции λ(Н) гексагонального монокристалла Tb вдоль его оси c и в базисной плоскости при разных температурах.
В поле, приложенном в базисной плоскости, магнитострикция сравнительно быстро стремится к насыщению (рис. 5, а), тогда как в направлении гексагональной оси c тенденция к насыщению не обнаруживается даже в очень сильном поле (Н= 150 кЭ).
|
Анализ приведенных результатов измерений показал, что за гигантскую магнитострикцию в Tb и Dy ответственны два механизма: одноионная маг-нитострикция и обменная магнитострикция (возникающая вдоль оси c, так как в этом направлении обменное взаимодействие сильно зависит от межатомного расстояния).