Механика Ньютона - основа классического описания природы
2.2. Закон всемирного тяготения.
Считается, что стержнем динамики Ньютона является понятие силы, а основная задача динамики заключается в установлении закона из данного движения и, наоборот, в определении закона движения тел по данной силе. Из законов Кеплера Ньютон вывел существование силы, направленной к Солнцу, которая была обратно пропорциональна квадрату расстояния планет от Солнца. Обобщив идеи, высказанные Кеплером, Гюйгенсом, Декартом, Борелли, Гуком, Ньютон придал им точную форму математического закона, в соответствии с которым утверждалось существование в природе силы всемирного тяготения, обусловливающей притяжение тел. Сила тяготения прямо пропорциональна произведению масс тяготеющих тел и обратно пропорционально квадрату расстояния между ними или математически:
, где G – гравитационная постоянная.
Данный закон описывает взаимодействие любых тел – важно лишь то, чтобы расстояние между телами было достаточно велико по сравнению с их размерами, это позволяет принимать тела за материальные точки. В ньютоновской теории тяготения принимается, что сила тяготения передается от одного тяготеющего тела к другому мгновенно, при чем без посредства каких бы то ни было сред. Закон всемирного тяготения вызвал продолжительные и яростные дискуссии. Это не было случайно, поскольку этот закон имел важное философское значение. Суть заключалась в том, что до Ньютона целью создания физических теорий было выявление и представление механизма физических явлений во всех его деталях. В тех случаях, когда это сделать не удавалось, выдвигался аргумент о так называемых "скрытых качествах", которые не поддаются детальной интерпретации. Бэкон и Декарт ссылки на "скрытые качества" объявили ненаучными. Декарт считал, что понять суть явления природы можно лишь в том случае, если его наглядно представить себе. Так, явления тяготения он представлял с помощью эфирных вихрей. В условиях широкого распространения подобных представлений закон всемирного тяготения Ньютона, несмотря на то, что демонстрировал соответствие произведенных на его основе астрономическим наблюдениям с небывалой ранее точностью, подвергался сомнению на том основании, что взаимное притяжение тел очень напоминало перипатетическое учение о "скрытых качествах". И хотя Ньютон установил факт его существования на основе математического анализа и экспериментальных данных, математический анализ еще не вошел прочно в сознание исследователей в качестве достаточно надежного метода. Но стремление ограничивать физическое исследование фактами, не претендующими на абсолютную истину, позволило Ньютону завершить формирование физики как самостоятельной науки и отделить ее от натурфилософии с ее претензиями на абсолютное знание.
В законе всемирного тяготения наука получила образец закона природы как абсолютно точного, повсюду применимого правила, без исключений, с точно определенными следствиями. Этот закон был включен Кантом в его философию, где природа представлялась царством необходимости в противоположность морали - царству свободы.
Физическая концепция Ньютона была своеобразным венцом физики XVII века. Статический подход к Вселенной был заменен динамическим. Эксперементально-математический метод исследования, позволив решить многие проблемы физики XVII века, оказался пригодным для решения физических проблем еще в течение двух веков.
2.3. Основная задача механики.
Результатом развития классической механики явилось создание единой механической картины мира, в рамках которой все качественное многообразие мира объяснялось различиями в движении тел, подчиняющемся законам ньютоновской механики. Согласно механической картине мира, если физическое явление мира можно было объяснить на основе законов механики, то такое объяснение признавалось научным. Механика Ньютона, таким образом, стала основой механической картины мира, господствовавшей вплоть до научной революции на рубеже XIX и XX столетий.
Механика Ньютона, в отличие от предшествующих механических концепций, давало возможность решать задачу о любой стадии движения, как предшествующей, так и последующей, и в любой точке пространства при известных фактах, обусловливающих это движение, а также обратную задачу определения величины и направления действия этих факторов в любой точке при известных основных элементах движения. Благодаря этому механика Ньютона могла использоваться в качестве метода количественного анализа механического движения. Любые физические явления могли изучаться как, независимо от вызывающих их факторов. Например, можно вычислить скорость спутника Земли: Для простоты найдем скорость спутника с орбитой, равной радиусу Земли (рис. 3). С достаточной точностью можно приравнять ускорение спутника ускорению свободного падения на поверхности Земли:
.
С другой стороны центростремительное ускорение спутника .
Поэтому ,
откуда . – Эта скорость называется первой космической скоростью. Тело любой массы, которому будет сообщена такая скорость, станет спутником Земли.
Законы ньютоновской механики связывали силу не с движением, а с изменением движения. Это позволило отказаться от традиционных представлений о том, что для поддержания движения нужна сила, и отвести трению, которое делало силу необходимой в действующих механизмах для поддержания движения, второстепенную роль. Установив динамический взгляд на мир вместо традиционного статического, Ньютон свою динамику сделал основой теоретической физики. Хотя Ньютон проявлял осторожность в механических истолкованиях природных явлений, все равно считал желательным выведение из начал механики остальных явлений природы. Дальнейшее развитие физики стало осуществляться в направлении дальнейшей разработки аппарата механики применительно к решению конкретных задач, по мере решения которых механическая картина мира укреплялась.
2.4. Границы применимости.
Вследствие развития физики в начале XX века определилась область применения классической механики: ее законы выполняются для движений, скорость которых много меньше скорости света. Было установлено, что с ростом скорости масса тела возрастает. Вообще законы классической механики Ньютона справедливы для случая инерциальных систем отсчета. В случае неинерциальных систем отсчета ситуация иная. При ускоренном движении неинерциальной системы координат относительно инерциальной системы первый закон Ньютона (закон инерции) в этой системе не имеет места, – свободные тела в ней будут с течением времени менять свою скорость движения.
Первое несоответствие в классической механике было выявлено, тогда когда был открыт микромир. В классической механике перемещения в пространстве и определение скорости изучались вне зависимости от того, каким образом эти перемещения реализовывались. Применительно к явлениям микромира подобная ситуация, как выявилось, невозможна принципиально. Здесь пространственно-временная локализация, лежащая в основе кинематики, возможна лишь для некоторых частных случаев, которые зависят от конкретных динамических условий движения. В макро масштабах использование кинематики вполне допустимо. Для микро масштабов, где главная роль принадлежит квантам, кинематика, изучающая движение вне зависимости от динамических условий, теряет смысл.