Защита информации в системах дистанционного обучения с монопольным доступомРефераты >> Программирование и компьютеры >> Защита информации в системах дистанционного обучения с монопольным доступом
2.3. Преимущества применения полиморфных алгоритмов шифрования
К преимуществам применения полиморфных алгоритмов шифрования для систем, по функциональности схожим с АСДО, можно отнести следующие пункты:
· слабая очевидность принципа построения системы защиты;
· сложность создания универсальных средств для обхода системы защиты;
· легкая реализация системы асимметрического шифрования;
· возможность легкой, быстрой адаптации и усложнения такой системы;
· возможность расширения виртуальной машины с целью сокрытия части кода.
Рассмотрим теперь каждый их этих пунктов по отдельности и обоснуем эти преимущества. Можно привести и другие удобства, связанные с использование полиморфных механизмов в алгоритмах шифрования. Но, на мой взгляд, перечисленные преимущества являются основными и заслуживающими внимания.
1) Слабая очевидность принципа построения системы защиты, является следствием выбора достаточно своеобразных механизмов. Во-первых, это само выполнение кода шифрования/расшифрования в виртуальной машине. Во-вторых, наборы полиморфных алгоритмов, уникальных для каждого пакета защищаемого программного комплекса. Это должно повлечь серьезные затруднения при попытке анализа работы такой системы с целью поиска слабых мест для атаки. Если система сразу создаст видимость сложности и малой очевидности работы своих внутренних механизмов, то скорее всего это остановит человека от дальнейших исследований. Правильно построенная программа с использованием разрабатываемой системой защиты может не только оказаться сложной на вид, но и быть такой в действительности. Выбранные же методы сделают устройство данной системы нестандартным, и, можно сказать, неожиданным.
2) Сложность создания универсальных средств для обхода системы защиты заключается в возможности генерации уникальных пакетов защищенного ПО. Создание универсального механизма взлома средств защиты затруднено при отсутствии исходного кода. В противном случае необходим глубокий, подробный и профессиональный анализ такой системы, осложняемый тем, что каждая система использует свои алгоритмы шифрования/расшифрования. А модификация отдельного экземпляра защищенного ПО интереса не представляет. Ведь основной упор сделан на защиту от ее массового взлома, а не на высокую надежность отдельного экземпляра пакета.
3) Легкая реализация системы асимметрического шифрования, хоть и является побочным эффектом, но очень полезна и важна. Она представляет собой следствие необходимости генерировать два разных алгоритма, один для шифрования, а другой для расшифрования. На основе асимметрического шифрования можно организовать богатый набор различных механизмов в защищаемом программном комплексе. Примеры такого применения будут даны в других разделах данной работы.
4) Возможность легкой, быстрой адаптации и усложнения такой системы. Поскольку для разработчиков система предоставляется в исходном коде, то у него есть все возможности для его изменения. Это может быть вызвано необходимостью добавления новой функциональности. При этом для такой функциональности может быть реализована поддержка со стороны измененной виртуальной машины. В этом случае работа новых механизмов может стать сложной для анализа со стороны. Также легко внести изменения с целью усложнения генератора полиморфного кода и увеличения блоков, из которых строятся полиморфные алгоритмы. Это, например, может быть полезно в том случае, если кем-то, не смотря на все сложности, будет создан универсальный пакет для взлома системы зашиты. Тогда совсем небольшие изменения в коде, могут свести на нет труды взломщика. Стоит отметить, что это является очень простым действием, и потенциально способствует защите, так как делает процесс создания взлома еще более нерациональным.
5) Поскольку программисту отдаются исходные коды система защиты, то он легко может воспользоваться существующей виртуальной машиной и расширить ее для собственных нужд. То же самое касается и генератора полиморфных алгоритмов. Например, он может встроить в полиморфный код ряд специфической для его системы функций. Сейчас имеется возможность ограничить возможность использования алгоритмов по времени. А где-то, возможно, понадобится ограничение по количеству запусков. Можно расширить только виртуальную машину с целью выполнения в ней критических действий. Например, проверку результатов ответа. Выполнение виртуального кода намного сложнее для анализа, а, следовательно, расширяя механизм виртуальной машины, можно добиться существенного повышения защищенности АСДО.
2.4. Функциональность системы защиты
Ранее были рассмотрены цели, для которых разрабатывается система защиты, а также методы, с использованием которых эта система будет построена. Сформулируем функции системы защиты, которые она должна будет предоставить программисту.
1. Генератор полиморфных алгоритмов шифрование и расшифрования.
2. Виртуальная машина в которой могут исполняться полиморфные алгоритмы. Отметим также, что виртуальная машина может быть легко адаптирована, с целью выполнения программ иного назначения.
3. Асимметричная система шифрования данных.
4. Ограничение использования полиморфных алгоритмов по времени.
5. Защита исполняемых файлов от модификации.
6. Контроль за временем возможности запуска исполняемых файлов.
7. Поддержка таблиц соответствий между именами зашифрованных файлов и соответствующих им алгоритмам шифрования/расшифрования.
8. Упаковка шифруемых данных.
ГЛАВА 3. РЕАЛИЗАЦИЯ СИСТЕМЫ ЗАЩИТЫ
3.1. Выбор средств разработки и организации системы
Для разработки системы защиты необходим компилятор, обладающий хорошим быстродействием генерируемого кода. Требование к быстродействию обусловлено ресурсоемкостью алгоритмов шифрования и расшифрования. Также необходима среда с хорошей поддержкой COM. Желательно, чтобы язык был объектно ориентированный, что должно помочь в разработке достаточно сложного полиморфного генератора.
Естественным выбором будет использование Visual C++. Он отвечает всем необходимым требованиям. Также понадобится библиотека для сжатия данных. Наиболее подходящим кандидатом является библиотека ZLIB. Теперь рассмотрим по отдельности каждый из этих компонентов, с целью показать почему был сделан именно такой выбор. В рассмотрение войдут: язык С++, среда Visual C++, библиотека активных шаблонов (ATL), библиотека ZLIB.
3.1.1. Краткая характеристика языка программирования С++
Объектно-ориентированный язык С++ создавался как расширение языка Си. Разработанный Бьярном Страуструпом (Bjarne Stroustroup) из AT&T Bell Labs в начале 80-х, С++ получил широкое распространение среди программистов по четырем важным причинам.
· В языке С++ реализовано несколько дополнений к стандартному Си. Наиболее важным из этих дополнений является объектная ориентация, которая позволяет программисту использовать объектно-ориентированную парадигму разработки.
· Компиляторы С++ широко доступны, а язык соответствует стандартам ANSI.