Многопроцессорный вычислительный комплекс на основе коммутационной матрицы с симметричной обработкой заданий всеми процессорами
Рефераты >> Программирование и компьютеры >> Многопроцессорный вычислительный комплекс на основе коммутационной матрицы с симметричной обработкой заданий всеми процессорами

Так как большинство современных высокопроизводительных микропроцессоров имеют разрядность 64 бита, необходимо обеспечить разрядность памяти не менее 64 бит. Этой разрядности соответствует код Хэмминга (72, 64), что означает наличие 64 информационных разрядов и 8 контрольных. Можно рассчитать эффект от применения корректирующего кодирования:

Пусть вероятность отказа одиночного модуля памяти разрядностью 1 бит за некоторое время P1=10-5, тогда вероятность отказа одного из необходимых 64 модулей памяти за то же время Pобщ=64*P1=6.4*10-4. В случае применения кода Хэмминга для потери информации необходимы две ошибки в 72-х разрядах: Pобщ=(72*P1)*(71*P1)= 5.112*10-7. Таким образом надежность возрастает более чем на три порядка при увеличении стоимости на 12.5%. Разумеется эти рассуждения верны лишь в случае пренебрежимо малой вероятности отказов и стоимости кодера и декодера по сравнению с модулями памяти, однако в случае реальных объемов памяти это действительно так.

2.4 Организация резервирования и восстановления при отказе любого компонента МПВК

Одной из целей создания МПВК является достижение повышенной надежности вычислительной системы. Повышение надежности функционирования в МПВК достигается проще, чем в однопроцессорных ЭВМ, однако требует усложнения организации как аппаратуры МПВК, так и системного программного обеспечения, а для достижения наилучшего эффекта такой модификации нередко требует и прикладное программное обеспечение. При правильной организации МПВК отказы не приводят к потере данных или прекращению вычислительного процесса, а либо вообще не сказываются на работе МПВК, либо вызывают постепенную деградацию вычислительной мощности. Меры по обеспечению отказоустойчивости свои для каждого компонента МПВК.

Отказы оперативной памяти были рассмотрены выше. Отказы в коммутационной матрице также как и отказы оперативной памяти целесообразно маскировать применением кодов, корректирующих ошибки. Наиболее сложны для обнаружения и восстановления информации отказы процессоров, однако в случае наличия встроенных средств самоконтроля или при периодическом прогоне на каждом процессоре контрольных тестов, задача обнаружения решается довольно легко. Восстановление вычислительного процесса состоит в исключении операционной системой отказавшего процессора из списка доступных и запуске на другом процессоре пострадавшего процесса с последней контрольной точки. Отказы процессоров ввода-вывода обнаруживаются довольно легко, восстановление ввиду наличия 4-х идентичных по функциям ПВВ также несложно – необходимо лишь подключение критичных для работы МПВК периферийных устройств ко всем ПВВ с соответствующей коммутацией. Отказы самих периферийных устройств – наиболее простая и хорошо проработанная часть организации отказоустойчивости. Наиболее часто применяется тот или иной вид резервирования на уровне устройств – нагруженное, ненагруженное или скользящее.

Необходимо отметить, что поддержки операционной системы не требует в данном случае лишь организация отказоустойчивости оперативной памяти, коммутационной матрицы и некоторых периферийных устройств. Все остальные решения требуют той или иной поддержки на уровне ядра операционной системы МПВК.

Также стоит подчеркнуть, что, несмотря на возможности организации отказоустойчивости МПВК, все наиболее серьезные реализации отказоустойчивых вычислительных систем представляют собой ММВК. Это объясняется большей изолированностью, а следовательно и к меньшему воздействию отказавших модулей на другие модули в ММВК.

3. Организация функционирования ОС на МПВК

ОС МПВК должна выполнять все функции ОС однопроцессорной ЭВМ, однако дополнительно она должна обеспечивать эффективное использование ресурсов многопроцессорного комплекса (см. разделы “Симметричная многопроцессорная обработка”, “Нити”). Так как проблемы реализации ОС более серьезны, чем в однопроцессорном варианте, необходимо уделить особое внимание обеспечению корректного конкурентного доступа (предлагается использование семафоров – см. “Семафоры”). Для избежания простоев системы необходимо избегать тупиковых ситуаций (см. разделы “Тупиковые ситуации”, “Предотвращение тупиковых ситуаций”). Так как эффективных алгоритмов разрешения тупиков без потери информации, в общем случае, не существует, данные методы не рассматриваются (это в основном уничтожение процессов, начиная с наименее приоритетных процессов по какому-либо определенному заранее критерию).

В общем можно сказать, что ОС многопроцессорных ЭВМ похожи по функциям и реализации на ОС однопроцессорных ЭВМ, однако они выполняют некоторые дополнительные функции, а реализация основных функций часто более сложна.

3.1 Симметричная многопроцессорная обработка (Symmetric Multiprocessor Processing – SMP)

Для многопроцессорной обработки всегда требуются и соответствующие аппаратные платформы, и операционные системы. Однако ОС могут использовать многопроцессорные платформы несколькими разными способами. При асимметричной многопроцессорной обработке процессы прикладных программ назначаются конкретному процессору на аппаратной платформе. Нити каждого процесса должны ждать, пока назначенный им процессор освободится. Такой метод, как правило, менее эффективен, чем симметричный метод. Симметричная многопроцессорная обработка предполагает, что все процессоры имеют одинаковые возможности.

Под симметричной многопроцессорной обработкой обычно понимают равноправное разделение между процессорами различных задач, в числе которых в асимметричных системах могут быть ввод-вывод или числовые вычисления. В SMP системе все процессоры функционально идентичны, и любая задача может выполняться на любом процессоре. SMP ОС запускает процесс (нить) из общей очереди на первом освободившемся процессоре, как только выполнение процесса (нити) после приоритетного прерывания ОС возобновляется. В SMP-модели нагрузка динамически распределяется между процессорами, так что невозможна ситуация, в которой одни центральные процессоры перегружены, в то время как другие ничем не заняты.

Хотя все процессоры в SMP системе функционально идентичны, выделяется два их типа: загрузочный процессор (BSP) и прикладные процессоры (АР). Какой процессор играет роль загрузочного, определяется аппаратными средствами или совместно аппаратурой и BIOS. Это сделано для удобства и имеет значение только во время инициализации и выключения. BSP-процессор отвечает за инициализацию системы и за загрузку ОС. АР-процессор активизируется после загрузки ОС.

Симметричность имеет два важных аспекта: симметричность памяти и ввода-вывода. Память симметрична, если все процессоры совместно используют общее пространство памяти и имеют в этом пространстве доступ с одними и теми же адресами. Симметричность памяти предполагает, что все процессоры могут исполнять единственную копию ОС. В таком случае любые существующие системы и прикладные программы будут работать одинаково, независимо от числа установленных в системе процессоров. Требование симметричности ввода-вывода выполняется, если все процессоры имеют возможность доступа к одним и тем же подсистемам ввода-вывода (включая порты и контроллеры прерывания), причем любой процессор может получить прерывание от любого источника. Некоторые многопроцессорные системы, имеющие симметричный доступ к памяти, в то же время являются асимметричными по отношению к прерываниям устройств ввода-вывода, поскольку выделяют один процессор для обработки прерываний. Симметричность ввода-вывода помогает убрать потенциально узкие места ввода-вывода и тем самым повысить расширяемость системы.


Страница: