Лекции по вычислительной математикеРефераты >> Программирование и компьютеры >> Лекции по вычислительной математике
Отсюла следует, что задачу о коммивояжере достаточно ре-шить для полных орграфов с весовой функцией. Сформулируем теперь это в окончательном виде: пусть - полный ориентированный граф и - весовая функция; найти простой остовный ориентированный цикл («цикл коммивояжера») минимального веса.
Пусть конкретный состав множества вершин и - весовая матрица данного орграфа, т.е. ,
причем для любого .
Рассмотрение метода ветвей и границ для решения задачи о коммивояжере удобнее всего проводить на фоне конкретного примера. Пользуясь введенными здесь обозначениями, мы проводим это описание в следующей лекции.
Введем некоторые термины. Пусть имеется некоторая числовая матрица. Привести строку этой матрицы означает выде-лить в строке минимальный элемент (его называют константой приведения) и вычесть его из всех элементов этой строки. Оче-видно, в результате в этой строке на месте минимального эле-мента окажется ноль, а все остальные элементы будут неотрица-тельными. Аналогичный смысл имеют слова привести столбец матрицы. Слова привести матрицу по строкам означают, что все строки матрицы приводятся. Аналогичный смысл имеют слова привести матрицу по столбцам.
Наконец, слова привести матрицу означают, что матрица сначала приводится по строкам, а потом приводится по столб-цам.
Весом элемента матрицы называют сумму констант приведения матрицы, которая получается из данной матрицы заменой обсуждаемого элемента на ¥. Следовательно, слова самый тяжелый нуль в матрице означают, что в матрице подсчитан вес каждого нуля, а затем фиксирован нуль с максимальным весом.
Приступим теперь к описанию метода ветвей и границ для решения задачи о коммивояжере.
Первый шаг. Фиксируем множество всех обходов коммивояжера (т.е. всех простых ориентированных остовных циклов). Поскольку граф - полный, это множество заведомо непусто. Сопо-ставим ему число, которое будет играть роль значения на этом множестве оценочной функции: это число равно сумме констант приведения данной матрицы весов ребер графа. Если множест-во всех обходов коммивояжера обозначить через G, то сумму констант приведения матрицы весов обозначим через j(G). При-веденную матрицу весов данного графа следует запомнить; обо-значим ее через M1; таким образом, итог первого шага:
множеству G всех обходов коммивояжера сопоставлено чис-ло j(G) и матрица M1.
Второй шаг. Выберем в матрице M1 самый тяжелый нуль; пусть он стоит в клетке ; фиксируем ребро графа и разделим множество G на две части: на часть , состоящую из обходов, которые проходят через ребро , и на часть , состоящую из обходов, которые не проходят через ребро .
Сопоставим множеству следующую матрицу M1,1: в матрице M1 заменим на ¥ число в клетке . Затем в получен-ной матрице вычеркнем строку номер i и столбец номер j, причем у оставшихся строк и столбцов сохраним их исходные номера. Наконец, приведем эту последнюю матрицу и запомним сумму констант приведения. Полученная приведенная матрица и будет матрицей M1,1; только что запомненную сумму констант приведения прибавим к j(G) и результат, обозначаемый в даль-нейшем через j(), сопоставим множеству .
Теперь множеству тоже сопоставим некую матрицу M1,2. Для этого в матрице M1 заменим на ¥ число в клетке и полученную в результате матрицу приведем. Сумму констант приведения запомним, а полученную матрицу обозначим через M1,2. Прибавим запомненную сумму констант приведения к числу j(G) и полученное число, обозначаемое в дальнейшем через j(), сопоставим множеству .
Теперь выберем между множествами и то, на котором минимальна функция j (т.е. то из множеств, которому соответствует меньшее из чисел j() и j().
Заметим теперь, что в проведенных рассуждениях исполь-зовался в качестве исходного только один фактический объект - приведенная матрица весов данного орграфа. По ней было вы-делено определенное ребро графа и были построены новые матрицы, к которым, конечно, можно все то же самое применить.
При каждом таком повторном применении будет фиксироваться очередное ребро графа. Условимся о следующем действии: пе-ред тем, как в очередной матрице вычеркнуть строку и столбец,
в ней надо заменить на ¥ числа во всех тех клетках, которые со-ответвуют ребрам, заведомо не принадлежащим тем гамильто-новым циклам, которые проходят через уже отобранные ранее ребра; эту довольно трудную фразу мы еще не раз рассмотрим в следующей лекции на конкретном примере.
К выбранному множеству с сопоставленными ему матрицей и числом j повторим все то же самое и так далее, пока это воз-можно.
Доказывается, что в результате получится множество, со-стоящее из единственного обхода коммивояжера, вес которого равен очередному значению функции j; таким образом, оказы-ваются выполненными все условия, обсуждавшиеся при описа-нии метода ветвей и границ.
После этого осуществляется улучшение рекорда вплоть до получения окончательного ответа.