Методы поиска решений в экспертных системахРефераты >> Программирование и компьютеры >> Методы поиска решений в экспертных системах
Решение задачи при поиске методом редукции (при поиске в И/ИЛИ-графе) сводится к нахождению в И/ИЛИ-графе решающего графа.
Цель процесса поиска в И/ИЛИ-графе - показать, что начальная вершина разрешима, т.е. для этой вершины существует решающий граф. Определение разрешимой вершины в И/ИЛИ-графе можно сформулировать рекурсивно следующим образом:
1. Конечные (целевые) вершины разрешимы, так как их решение известно по исходному предположению.
2. Вершина ИЛИ разрешима тогда и только тогда, когда разрешима по крайней мере одна из ее дочерних вершин.
3. Вершина И разрешима тола и только тогда, когда разрешима каждая из ее дочерних вершин.
|
Решающий граф определяется как подграф из разрешимых вершин, который показывает, что начальная вершина разрешима (в соответствии с приведенным выше определением). На рис. 3.3. разрешимые вершины зачернены, а неразрешимые оставлены белыми.
|
Для графа И/ИЛИ, так же как для поиска в пространстве состояний, можно определить поиск в глубину и поиск в ширину как в прямом, так и в обратном направлении. На рис. 3.4. приведен пример поиска в ширину (рис. 3.4., а) и поиска в глубину (рис. 3.4., б). На рисунке вершины пронумерованы в том порядке, в котором они раскрывались, конечные вершины обозначены квадратами, разрешимые вершины зачернены, дуги решающего графа выделены двойными линиями.
|
3.1.3. Эвристический поиск
При увеличении пространства поиска методы слепого поиска требуют чрезмерных затрат времени и (или) памяти. Это привело к созданию эвристических методов поиска, т.е. методов, использующих некоторую информацию о предметной области для рассмотрения не всего пространства поиска, а таких путей в нем, которые с наибольшей вероятностью приводят .к цели. '
3.1.4.Поиск методом "генерация-проверка"
Процесс поиска может быть сформулирован в терминах "генерация-проверка". Для осуществления процесса поиска необходимо генерировать очередное возможное решение (состояние или подзадачу) и проверить, не является ли оно результирующим.
3.2. ПОИСК В ИЕРАРХИИ ПРОСТРАНСТВ
Методы поиска в одном пространстве не позволяют решать сложные задачи, так как с увеличением размера пространства время поиска экспоненциально растет. При большом размере пространства поиска можно попробовать разбить общее пространство на подпространства и осуществлять поиск сначала в них. Пространство поиска представлено иерархией пространств.
Методы поиска решения в иерархических пространствах обычно делятся на:
1) поиск в факторизованном пространстве,
2) поиск в фиксированном множестве пространств
3) поиск в изменяющемся множестве пространств.
3.2.1. Поиск в факторизованном пространстве
Во многих приложениях требуется найти все решения. Например - постановка диагноза. Пространство называется факторизованным, если оно разбивается на непересекающиеся подпространства (классы) частичными (неполными) решениями. Причем по виду частичного решения можно определить, что оно не приведет к успеху, т.е. что все полные решения, образованные из него, не приведут к целевым решениям. Поиск в факторизованном пространстве осуществляется на основе метола "иерархическая генерация-проверка". Если пространство поиска удается факторизовать, то поиск даже в очень большом пространстве можно организовать эффективно.
3.2.2. Поиск в фиксированном множестве пространств
Применение метода факторизации пространства ограничено тем, что для ряда областей не удается по частичному решению сделать заключение о его непригодности. Например задачи планирования и конструирования. В этих случаях могут быть применены методы поиска, использующие идею абстрактного пространства. Абстракция должна подчеркнуть важные особенности рассматриваемой задачи, позволить разбить задачу на более простые подзадачи и определить последовательность подзадач (план решения), приводящую к решению основной задачи.
3.2.3. Поиск в изменяющемся множестве иерархических пространств
В ряде приложений не удается все решаемые задачи свести к фиксированному набору подзадач. План решения задачи в данном случае должен иметь переменную структуру и не может быть сведен к фиксированному набору подзадач. Для решения подобных задач может быть использован метод нисходящего уточнения. Этот метод базируется на следующих предположениях:
· возможно осуществить частичное упорядочение понятий области, приемлемое для всех решаемых задач;
· решения, принимаемые на верхних уровнях, нет необходимости отменять на более нижних.
3.3. ПОИСК В АЛЬТЕРНАТИВНЫХ ПРОСТРАНСТВАХ
Рассмотренные выше методы поиска исходят из молчаливой предпосылки, что знания о предметной области и данные о решаемой задаче являются точными и полными и для них справедливо следующее:
· все утверждения, описывающие состояние, являются истинными;
· применение оператора к некоторому состоянию формирует некоторое новое состояние, описание которого состоит только из истинных фактов.
Однако при решении любых практических задач и особенно при решении неформализованных задач распространена обратная ситуация. Эксперту приходится работать в условиях неполноты и неточности знаний (данных) и, как правило, в условиях дефицита времени. Когда эксперт решает задачу, он использует методы, отличающиеся от формальных математических рассуждений. В этом случае эксперт делает правдоподобные предположения, которые он не может доказать; тем самым вопрос об их истинности остается открытым. Все утверждения, полученные на основе этих правдоподобных предположений, также не могут быть доказаны.