Методы поиска решений в экспертных системах
Рефераты >> Программирование и компьютеры >> Методы поиска решений в экспертных системах

Решение задачи при поиске методом редукции (при поиске в И/ИЛИ-графе) сводится к нахождению в И/ИЛИ-графе решающего графа.

Цель процесса поиска в И/ИЛИ-графе - показать, что начальная вершина разрешима, т.е. для этой вершины существует решающий граф. Определение разрешимой вершины в И/ИЛИ-графе можно сформулировать рекурсивно следующим образом:

1. Конечные (целевые) вершины разрешимы, так как их решение известно по исходному предположению.

2. Вершина ИЛИ разрешима тогда и только тогда, когда разрешима по крайней мере одна из ее дочерних вершин.

3. Вершина И разрешима тола и только тогда, когда разрешима каждая из ее дочерних вершин.

Рис.3.2.

 

 

Решающий граф определяется как подграф из разрешимых вершин, который показывает, что начальная вершина разрешима (в соответствии с приведенным выше определением). На рис. 3.3. разрешимые вершины зачернены, а неразрешимые оставлены белыми.

Рис.3.3.

Для графа И/ИЛИ, так же как для поиска в пространстве состояний, можно определить поиск в глубину и поиск в ширину как в прямом, так и в обратном направлении. На рис. 3.4. приведен пример поиска в ширину (рис. 3.4., а) и поиска в глубину (рис. 3.4., б). На рисунке вершины пронумерованы в том порядке, в котором они раскрывались, конечные вершины обозначены квадратами, разрешимые вершины зачернены, дуги решающего графа выделены двойными линиями.

Рис.3.4.

3.1.3. Эвристический поиск

При увеличении пространства поиска методы слепого поиска требуют чрезмерных затрат времени и (или) памяти. Это привело к созданию эвристических методов поиска, т.е. методов, использующих некоторую информацию о предметной области для рассмотрения не всего пространства поиска, а таких путей в нем, которые с наибольшей вероятностью приводят .к цели. '

3.1.4.Поиск методом "генерация-проверка"

Процесс поиска может быть сформулирован в терминах "генерация-проверка". Для осуществления процесса поиска необходимо генерировать очередное возможное решение (состояние или подзадачу) и проверить, не является ли оно результирующим.

3.2. ПОИСК В ИЕРАРХИИ ПРОСТРАНСТВ

Методы поиска в одном пространстве не позволяют решать сложные задачи, так как с увеличением размера пространства время поиска экспоненциально растет. При большом размере пространства поиска можно попробовать разбить общее пространство на подпространства и осуществлять поиск сначала в них. Пространство поиска представлено иерархией пространств.

Методы поиска решения в иерархических пространствах обычно делятся на:

1) поиск в факторизованном пространстве,

2) поиск в фиксированном множестве пространств

3) поиск в изменяющемся множестве пространств.

3.2.1. Поиск в факторизованном пространстве

Во многих приложениях требуется найти все решения. Например - постановка диагноза. Пространство называется факторизованным, если оно разбивается на непересекающиеся подпространства (классы) частичными (неполными) решениями. Причем по виду частичного решения можно определить, что оно не приведет к успеху, т.е. что все полные решения, образованные из него, не приведут к целевым решениям. Поиск в факторизованном пространстве осуществляется на основе метола "иерархическая генерация-проверка". Если пространство поиска удается факторизовать, то поиск даже в очень большом пространстве можно организовать эффективно.

3.2.2. Поиск в фиксированном множестве пространств

Применение метода факторизации пространства ограничено тем, что для ряда областей не удается по частичному решению сделать заключение о его непригодности. Например задачи планирования и конструирования. В этих случаях могут быть применены методы поиска, использующие идею абстрактного пространства. Абстракция должна подчеркнуть важные особенности рассматриваемой задачи, позволить разбить задачу на более простые подзадачи и определить последовательность подзадач (план решения), приводящую к решению основной задачи.

3.2.3. Поиск в изменяющемся множестве иерархических пространств

В ряде приложений не удается все решаемые задачи свести к фиксированному набору подзадач. План решения задачи в данном случае должен иметь переменную структуру и не может быть сведен к фиксированному набору подзадач. Для решения подобных задач может быть использован метод нисходящего уточнения. Этот метод базируется на следующих предположениях:

· возможно осуществить частичное упорядочение понятий области, приемлемое для всех решаемых задач;

· решения, принимаемые на верхних уровнях, нет необходимости отменять на более нижних.

3.3. ПОИСК В АЛЬТЕРНАТИВНЫХ ПРОСТРАНСТВАХ

Рассмотренные выше методы поиска исходят из молчаливой предпосылки, что знания о предметной области и данные о решаемой задаче являются точными и полными и для них справедливо следующее:

· все утверждения, описывающие состояние, являются истинными;

· применение оператора к некоторому состоянию формирует некоторое новое состояние, описание которого состоит только из истинных фактов.

Однако при решении любых практических задач и особенно при решении неформализованных задач распространена обратная ситуация. Эксперту приходится работать в условиях неполноты и неточности знаний (данных) и, как правило, в условиях дефицита времени. Когда эксперт решает задачу, он использует методы, отличающиеся от формальных математических рассуждений. В этом случае эксперт делает правдоподобные предположения, которые он не может доказать; тем самым вопрос об их истинности остается открытым. Все утверждения, полученные на основе этих правдоподобных предположений, также не могут быть доказаны.


Страница: