Синтез комбинацонных схем и конечных автоматов, сети ПетриРефераты >> Программирование и компьютеры >> Синтез комбинацонных схем и конечных автоматов, сети Петри
СОДЕРЖАНИЕ
Введение
1 Синтез комбинационных схем
1.1 Постановка задачи
1.2 Теоретические сведения
1.3 Расчёты и полученные результаты
1.4 Выводы по разделу
2 Синтез конечных автоматов
2.1 Постановка задачи
2.2 Теоретические сведения
2.3 Расчёты и полученные результаты
2.4 Выводы по разделу
3 Сети Петри
3.1 Постановка задачи
3.2 Теоретические сведения
3.3 Расчёты и полученные результаты
3.4 Выводы по разделу
Заключение
Литература
Приложение А
ВВЕДЕНИЕ
Работа посвящена синтезу дискретных устройств с “памятью” (конечных автоматов) и “без памяти” (комбинационных схем), а также анализу реально протекающих процессов с помощью сетей Петри.
В первой части рассмотрена минимизация булевых функций, заданных в виде СДНФ, с помощью двух различных способов : карт Карно и метода склеивания Квайна – МакКласки. Полученные в виде минимизированных ДНФ функции были приведены к базисам, состоящим всего из одной функции : И – НЕ и ИЛИ – НЕ , а затем реализованы в виде комбинационных схем на соответствующих логических элементах.
Во второй части заданный по условию в функциональном виде конечный автомат был минимизирован по числу состояний. Для полученного автомата был построен граф состояний. Затем, перейдя к двоичному представлению входных, выходных сигналов и сигналов состояния, в автомате были выделены элементы памяти и комбинационная часть, которая затем была минимизирована по числу переменнных. Автомат был реализован в базисе И – ИЛИ – НЕ с использованием D - триггера и задержки.
В третьей части была проанализирована заданная сеть Петри с помощью двух способов: матричного и основанного на построении дерева покрываемости, а также написана программа для её моделирования.
1 Синтез комбинационных схем
1.1 Постановка задачи
Для двух булевых функций, построенных по варианту задания в виде
(1.1.1)
, (1.1.2)
где gi, zi – десятичные числа из диапазона от 0 до 15 в двоичном виде,
сделать следующее:
а) представить F1 и F2 в виде СДНФ.
б) минимизировать (по количеству переменных в ДНФ) F1 с
помощью карт Карно, F2 – методом Квайна-МакКласки.
в) реализовать в виде комбинационной схемы на логических элементах F1 – в базисе И – НЕ, F2 – в базисе ИЛИ – НЕ, предварительно приведя F1 и F2 к соответствующим базисам.
gi и zi вычислять по выражениям:
(1.1.3)
(1.1.4)
при g0 = A, z0 = B . Параметр изменять от 1 до тех пор, пока не будет получено 9 различных значений gi и zi.
1.2 Теоретические сведения.
Булевой алгеброй называется множество S объектов A, B, C…, в котором определены две бинарные операции (логическое сложение – дизъюнкция(+) и логическое умножение – конъюнкция(∙)) и одна унарная операция(логическое отрицание()). Оно обладает следующими свойствами:
а) Для A, B, C S
1) , (замкнутость);
2) (коммутативные законы);
3) (ассоциативные законы);
4) (дистрибутивные законы);
5) (свойства идемпотентности);
6) в том и только том случае, если
(свойство совместимости);
7) S содержит элементы 1 и 0 такие, что для всякого элемента
;
8) для каждого элемента A класс S содержит элемент Ã (дополнение элемента A, часто обозначаемое символами Ā или 1- A ) такой, что
, .
В каждой булевой алгебре
(законы поглощения),
(законы склеивания),
(двойственность, законы де Моргана).
Если даны n булевых переменных X1, X2,…, Xn, каждая из которых может быть равна любому элементу булевой алгебры, то булевой функцией называется выражение
(1.2.1)
В каждой булевой алгебре существует ровно различных булевых функций n переменных.
Система булевых функций называется полной (базисом), если любая функция может быть представлена в виде суперпозиции функций выбраной системы.
Под критерим минимизации (упрощения) булевых функций будем понимать достижение минимума букв в записи функции.
Введём понятие многомерного куба.
Любую булеву функцию n переменных, заданную в ДНФ или СДНФ, можно отобразиь на n-мерном кубе, построенном в ортогональном базисе n булевых переменных. Каждое слагаемое в ДНФ или СДНФ представляется гиперплоскостью соответствующей размерности: если оно представляет собой конъюнкцию n переменных – точка, n-1 переменных – прямая, n-2 переменных – плоскость и т.д. Элементы n-мерного куба, имеющие s измерений, назовём s-кубами.
Комплекс K(y) кубов функции y=ƒ(x1,x2,…,xn) есть объединение Ks(y) множеств всех её кубов. Отсутствующие в конъюнкциях переменные будем обозначать через x.
1.3 Расчёты и полученные результаты.
По варианту задания находим gi и zi:
i |
gi |
zi |
0 |
5 |
0 |
1 |
1 |
6 |
2 |
8 |
2 |
3 |
5 |
9 |
4 |
13 |
6 |
5 |
11 |
14 |
6 |
4 |
12 |
7 |
3 |
5 |
8 |
13 |
4 |
9 |
13 |
14 |
10 |
8 |
14 |
11 |
9 |
9 |
12 |
5 |
10 |
13 |
7 |
6 |