Системы диагностики ПКРефераты >> Программирование и компьютеры >> Системы диагностики ПК
Для классификации технических решений, используемых при реализации систем диагностирования, введем понятие метода диагностирования.
Метод диагностирования характеризуется объектом элементарной проверки, способом подачи воздействия и снятия ответа.
Существуют следующие методы тестового диагностирования:
двухэтапное диагностирование;
последовательное сканирование;
эталонные состояния;
микродиагностирование;
диагностирование, ориентированное на проверку сменных блоков.
Рис. 5. Структурная схема средств тестового диагностирования на базе сервисного процессора
Рис 6. Этапы проектирования систем тестового диагностирования
Методы функционального диагностирования включают в себя:
диагностирование с помощью схем встроенного контроля;
диагностирование с помощью самопроверяемого дублирования; диагностирование по регистрации состояния.
Процесс разработки систем диагностирования состоит из следующих этапов (рис. 6):
выбора метода диагностирования;
разработки аппаратурных средств диагностирования разработки диагностических тестов;
разработки диагностических справочников;
проверки качества разработанной системы диагностирования.
Для сравнения .различных систем диагностирования и оценки их качества чаще всего используются следующие показатели:
вероятность обнаружения неисправности (F);
вероятность правильного диагностирования (D). Неисправность диагностирована правильно, если неисправный блок указан в разделе диагностического справочника, соответствующем коду останова. В противном случае неисправность считается обнаруженной, но нелокализованной. Для ЭВМ с развитой системой диагностирования Обычно F>0,95, D>0,90. В том случае, когда неисправность только обнаружена, необходимы дополнительные процедуры по ее локализации. Однако благодаря тем возможностям, которые система диагностирования предоставляет обслуживающему персоналу (возможность зацикливания тестового примера для осциллографирования, эталонные значения сигналов в схемах на каждом примере, возможность останова на требуемом такте), локализация неисправности после ее обнаружения не требует больших затрат времени;
средняя продолжительность однократного диагностирования (тд). Величина тд включает в себя продолжительность выполнения вспомогательных операций диагностирования и продолжительность собственно диагностирования. Часто удобнее использовать коэффициент продолжительности диагностирования
где Тв — время восстановления. Коэффициент kд показывает, какая часть времени восстановления остаемся на восстановительные процедуры. Так, например, если тд= = 15 мин, а Тв= 60 мин, kд= 1—15/60=0,75;
глубина поиска дефекта (L). Величина L указывает составную часть диагностируемого устройства с точностью, до которой определяется место дефекта.
В ЭВМ за глубину поиска дефекта L принимается число предполагаемых неисправными сменных блоков (ТЭЗ), определяемое по формуле
где ni — число предполагаемых неисправными сменных блоков (ТЭЗ) при 1-й неисправности; N — общее число неисправностей.
В качестве показателя глубины поиска дефекта можно также использовать коэффициент глубины поиска дефекта kг.п.д, определяющий долю неисправностей, локализуемых с точностью до М сменных блоков (ТЭЗ), М=l, 2, 3, ., m.
Пусть di==l, если при i-й неисправности число подозреваемых сменных блоков не превышает М. В противном случае аi=0. Тогда (ni<M)
Для ЭВМ с развитой системой диагностирования для M<3 обычно kг.п.д>0,9. Это означает, что для 90 % неисправностей число предполагаемых неисправными сменных блоков, указанных в диагностическом справочнике, не превышает трех; объем диагностического ядра h — доля той аппаратуры в общем объеме аппаратуры ЭВМ, которая должна быть заведомо исправной до начала процесса диагностирования. В качестве показателя объема диагностического ядра можно пользоваться также величиной
Для ЭВМ, использующих принцип раскрутки и метод микродиагностирования, H>0,9.
.В качестве интегрального показателя системы диагностирования можно пользоваться коэффициентом
Для приведенных в качестве примеров количественных показателей системы диагностирования интегральный коэффициент
kи = 0,95.0,90.0,75.0,90.0,90 = 0,51.
2. МЕТОД ДВУХЭТАПНОГО ДИАГНОСТИРОВАНИЯ
Метод двухэтапного диагностирования — это метод диагностирования, при котором объектами элементарных проверок на разных этапах диагностирования являются схемы c памятью (регистры и триггеры) и комбинационные схемы.
Рис. 7. Обобщенная схема системы диагностирования, реализующей метод двухэтапного диагностирования: ДУ — диагностируемое устройство: 1, .,i l, ., n — регистры; KCi KСm—комбинационные схемы
Диагностическая информация, включающая в себя данные тестового воздействия, результат и состав контрольных точек элементарной проверки, адреса следующих элементарных проверок в алгоритме диагностирования, имеет стандартный формат, называемый тестом локализации неисправностей (ТЛН).
Обобщенная, схем а системы диагностирования, использующей метод двухэтапного диагностирования, показана на рис. 7.
Подача тестовых воздействий, снятие ответа, анализ и выдача результатов реализации алгоритма диагностирования выполняются с помощью стандартных диагностических операций «Установка», «Опрос», «Сравнение» и «Ветвление».
Рис. 8. Формат ТЛН
Стандартный формат ТЛН показан на рис. 8. Тест локализации неисправностей содержит установочную и управляющую информацию, адрес ячейки памяти, в которую записывается результат элементарной проверки, эталонный результат, адреса ТЛН, которым передается управление при совпадении и несовпадении результата с эталонным, и номер теста. Стандартные диагностические операции, последовательность которых приведена на рис. 9, могут быть реализованы аппаратурно или микропрограммно.
Диагностирование аппаратуры по этому методу выполняется в два этапа:
на первом этапе проверяются все регистры и триггеры, которые могут быть установлены с помощью операции «Установка» и опрошены по дополнительным выходам операцией «Опрос»;
на втором этапе проверяются все комбинационные схемы, а также регистры и триггеры, не имеющие непосредственной установки или опроса.
Каждая элементарная проверка, которой соответствует один ТЛН, выполняется следующим образом: c помощью операции «Установка» устанавливаются регистры и триггеры ДУ, в том числе и не проверяемые данным ТЛН, в состояние, заданное установочной информацией ТЛН (установка регистров и триггеров может выполняться по существующим или дополнительным входам). Управляющая информация задает адрес микрокоманды (из числа рабочих микрокоманд), содержащей проверяемую микрооперацию и число микрокоманд, которые необходимо выполнить, начиная с указанной. В тестах первого этапа эта -управляющая информация отсутствует, так как после установки сразу выполняется опрос.