Адсорбция полимеров на границе раздела твердое тело - водный раствор
Рефераты >> Химия >> Адсорбция полимеров на границе раздела твердое тело - водный раствор

ГРАНИЧНЫЕ СЛОИ ПОЛИМЕРОВ

НА ТВЕРДЫХ ПОВЕРХНОСТЯХ

Молекулярная подвижность полимеров в граничных слоях определяется гибкостью полимерной цепи н характером ее взаимодействия с поверхностью, т. е. теми же факторами, которыми опреде­ляется адсорбция. При рассмотрении вопроса о молекулярной подвижности следует иметь в виду, что прямое определение молеку­лярной подвижности в адсорбционных слоях полимеров экспери­ментально затруднено и лосих пор в литературе отсутствуют работы, в которых такие исследования были бы проведены действительно на адсорбционных слоях.

Мы имеем в виду необходимость разграничения понятий об адсорбционном и о граничной слое. В соответствии с изложенным, адсорбционным слоем является тот слой макромолекул, который образуется на поверхности вследствие адсорбции на ней полимера из раствора и в котором часть сегментов полимерных цепей находит­ся во взаимодействии с поверхностью Толщина такого адсорбцион­ного слоя определяется конформацией адсорбированных моле­кул, но уже при переходе к более сложным системам, в которых имеет место полимолекулярная адсорбция или адсорбция на поверхности не отдельных макромолекул, а их агрегатов, такое опре­деление становится уже не применимым, так как в этом случае с по­верхностью оказываются связанными не только молекулы полиме­ра, имеющие непосредственные контакты с поверхностью. На такую возможность указано в работах Силберберга, а также в работах Ю С. Липатова н Л. М. Сергеевой [15-17].

Условия образования подобных систем исключают также воз­можность непосредственного исследования свойств граничных слоев Практически нигде (за исключением кристаллизующихся в очень тонких слоях полимеров) нельзя исследовать свойства соб­ственно граничных слоев, и поэтому все выводы делаются на основании изменений, вносимых границей раздела в объемные свойства полимера, т. е. на нахождении некоторых избыточных характеристик. Поэтому все экспериментальные характеристики являются суммой свойств граничного слоя и объема, и суждения о характере измене­ния структуры в граничных слоях делаются на основе анализа направления изменения тех или иных характеристик. В этом случае наиболее удобней моделью для исследования свойств граничных слоев являются наполненные полимеры, которые можно рассматри­вать как систему из частиц твердого тела с тонкими полимерными слоями на поверхности.

ВЛИЯНИЕ АДСОРБЦИОННОГО ВЗАИМОДЕЙСТВИЯ НА МОЛЕКУЛЯРНУЮ ПОДВИЖНОСТЬ

ПОЛИМЕРНЫХ ЦЕПЕЙ В ГРАНИЧНЫХ СЛОЯХ

Адсорбционное взаимодействие полимерных молекул с поверх­ностью, которое имеет место в наполненных системах, можно рас­сматривать как процесс, приводящий к перераспределению межмоле­кулярных связей в системе и к образованию дополнительных узлов физической структурной сетки вследствие взаимодействия сегментов с поверхностью. Образование дополнительных узлов должно снижать молекулярную подвижность как результат структуриро­вания системы. Можно ожидать, что в зависимости от условий полу­чения наполненного полимера и типа взаимодействия цепей с по­верхностью число дополнительных узлов будет различно, а следо­вательно, и свойства поверхностного слоя полимера также будут отличаться. Первым актом образования поверхности и пленки (лакового, покрытия, клеевого соединения и т. п.) является адсорбция молекул полимера поверхностью. В зависимости от характера адсорбции и формы цепей в расплаве или растворе свойства поверх­ностных слоев будут различными.

Исследование релаксационных процессов в полимерах, нахо­дящихся на границе раздела с твердыми телами, представляет теоре­тический и практический интерес в связи с проблемой создания конструкционных наполненных полимерных материалов и нахож­дения оптимальных условий переработки и эксплуатации.

Установлено [18], что наличие границы раздела приводит к су­щественному изменению релаксационного поведения полимера в граничном слое, изменению температур стеклования н ширины интервала стеклования. изменению средних времен релаксации и пр. Это связано с изменениями плотности молекулярной упаков­ки, а также с уменьшением подвижности сегментов полимерных цепей и более крупных кинетических элементов вследствие их взаи­модействия с твердой поверхностью.

На основании данных авторы считают, что ограничения подвижности целей в граничных слоях связаны прежде всего с эн­тропийным фактором, т. е обеднением конформационного набора макромолекул вблизи границы раздела. Эго позволяет удовлетво­рительно объяснить независимость аффекта от химической природы поверхности, распространение изменения подвижности на слои, непосредственно не контактирующие с поверхностью. влияние на эти эффекты гибкости полимерной цепи. Действительно, конформационный набор молекул жесткоцепного полимера, который весьма ограничен по сравнению с гибкими молекулами, не может столь же сильно изменяться вблизи границы раздела вследствие жесткости цепей, как в случае гибких молекул. Здесь эффекты изменения подвижности цепей не проявляются.

Таким образом, можно заключить, что изменения молекулярной подвижности связаны с уменьшением гибкости цепи в граничном слое вследствие конформационных ограничений, накладываемых геометрией поверхности. При этом не имеет значения, вызвано ли изменение конформаций только наличи­ем поверхности или некоторой степенью связывания молекул по­верхностью Последний фактор, весьма существенный с точки зре­ния прочности адгезионной связи, не имеет существенного значения при уменьшении молекулярной подвижности, поскольку эти процессы не связаны с нарушением связей на границе раздела.

Следует отметить, что во всех приведенных примерах не рас­сматривались случаи сильных специфических взаимодействий на границе раздела, где, возможно, картина будет несколько отли­чаться от описанной.

С изложенной точки зрения представляется интересным оценить вклад энергетического и энтропийного фактора в изменение молекулярной подвижности вблизи границы раздела [35]. Это сделано на основании данных по энергиям активации релаксационных процессов в поверхностных слоях, полученных температурной зависимости средних времен релаксации (табл. 1).

где DF -

свободная энергия активации релаксационного процесса;

t - время релаксации процессов;

t0 - значение t при 1/Т=0.

Из этого уравнения имеем:

или

где DH - энтальпия активации при условии независимости t0 от Т. Отсюда

Таблица 1.

Значение активации и температурные смещения релаксационных процессов полимеров, находящихся в тонких слоях, определенных методом ЯМР и диэлектрическим методом

Содержание аэросила, %

Содержание фторпласта, %

Энергия активации релаксации, ккал/моль

Энергия активации диэлектрической релаксации, ккал/моль

ПММА

ПСТ

Сополимер ММА-СТ

ПММА

ПСТ

Сополимер ММА-СТ

Групповое движение

0

0

1,8

-

2,1

23,7

-

14,9

8,83

-

-

-

1,7

-

-

12,6

1,32

-

1,4

-

-

18,5

-

-

23,08

-

1,2

-

-

15,4

-

-

24,90

-

-

-

1,8

-

-

10,7

-

26,5

-

-

1,7

-

-

12,6

-

49,2

1,5

-

-

20,0

-

-

-

75,0

1,4

-

1,5

18,8

-

10,6

Сегментальное движение

0

0

14,5

11,3

13,3

-

90,0

99,0

8,83

-

-

-

12,0

-

-

-

1,32

-

9,8

-

-

-

60,9

-

23,08

-

9,2

12,3

-

-

57,1

-

24,90

-

-

-

11,5

-

-

85,5

-

26,5

-

-

12,0

-

-

89,5

-

49,2

11,0

-

-

-

69,2

-

-

75,0

10,1

13,1

11,4

-

63,2

84,6


Страница: