Классификация микропроцессоров, типы и характеристики выпускаемых МП комплектовРефераты >> Программирование и компьютеры >> Классификация микропроцессоров, типы и характеристики выпускаемых МП комплектов
Основным достоинством такого решения является то, что работа с таблицей осуществляется на частоте процессора, то есть результат обращения к кэшу становится известен гораздо раньше, чем в случае внекристального расположения таблицы тэгов. Соответственно, при непопадании в кэш процедура инициализации обращения к основной памяти начинается на несколько тактов раньше. Аналогично обстоит дело и с поддержкой когерентности кэшей в многопроцессорных системах.
Перечисленные преимущества отчасти можно отнести и к контроллеру SDRAM, однако, там производительность канала в меньшей степени зависит от быстроты работы контроллера.
Особенности реализации канала записи в L2 кэш-память
Процедура записи, использованная в UltraSPARC III, может показаться слишком сложной с точки зрения аппаратурной реализации (см. рис. Рис. 2), однако, на самом деле это не так.
Рисунок 2. Канал записи в кэш второго уровня.
Канал записи состоит из трех основных частей: очереди на 8 слов (Store Queue), кэш-памяти данных первого уровня (L1 Data Cache) и кэш-памяти записи (Write Cache). Сразу же отметим, что кэши имеют различные механизмы обновления: L1 кэш данных — сквозной записи, а кэш записи — отложенный. Далее будет понятно, зачем это нужно.
Сначала сохраняемая информация записывается в очередь. Это происходит во время выполнения команды сохранения. Затем, после завершения команды, данные записываются в L1 кэш и, одновременно, в кэш записи. При этом, если происходит непопадание в L1 кэш, то его содержимое не обновляется. В противном случае из-за сквозного режима обновления данной кэш-памяти происходило бы постоянное обращение ко вторичному кэшу. Таким образом, кэш-память записи как бы дополняет и дублирует L1 кэш, но только в процессе записи. По утверждениям разработчиков, использование такой организации канала записи позволяет сократить трафик на шине вторичной кэш-памяти на 90%.
Системный интерфейс
Системный интерфейс по своим характеристикам аналогичен каналу основной памяти. Из специфических механизмов, свойственных только ему, следует отметить поддержку многопроцессорности (до четырех процессоров в конфигурации с общей шиной и более четырех при иерархической структуре шин).
Подводя итог всему сказанному об организации внешних интерфейсов процессора UltraSPARC III, можно отметить следующее.
Во-первых, многошинная структура позволяет легко строить на базе данного процессора как однопроцессорные, так и многопроцессорные системы. При этом число процессоров в системе практически не ограничено (1000 и больше).
Во-вторых, использование накристальной логики управления каналами позволяет масштабировать их пропускную способность, увеличивая производительность с ростом рабочей частоты процессора и появлением более быстрой памяти.
В-третьих, структура внешних связей процессора позволяет легко сделать на его основе модификацию для недорогих серверов.
Процессор PowerPC G5
Максимальная частота процессора PowerPC G5 составляет до 2 ГГц. Apple не зря гордится своим новым детищем – по стандартным тестам (SPEC CPU 2000: SPECfp_base2000 и SPECint_base 2000 – на целочисленные вычисления и вычисления с плавающей точкой) G5 делает и самый последний Pentium 4, и Xeon (в одно- и двухпроцессорной конфигурации). Также G5 показал свое превосходство во многих популярных приложениях. Например, в Photoshop’е (со специальным плагином, оптимизированным под G5) оставил конкурентов далеко позади, обогнав их по производительности примерно в 2 раза. Проц был разработан благодаря долгому сотрудничеству Apple и IBM, его релиза около полутора лет ждали миллионы пользователей Мака, даже ходили слухи о возможном переходе Apple на Itanium. Но разработчики никого не обломали, выпустив действительно революционный продукт. В основу разработки был положен процессор прошлого поколения – 64-битный PowerPC G4. Всего на 118 мм^2 площади процессора, при помощи 0,13-мкм процесса, разработчики смогли уместить свыше 58 миллионов транзисторов.
PowerPC выпускается в трех вариантах: 1,6, 1,8 и два по 2,0 ГГц. Кэш-память второго уровня (L2 cache) составляет 512K со сверхбыстрой скоростью доступа к данным и инструкциям. Кэш первого уровня составляет 64K для инструкций (L1 I-cache) с прямым доступом на скорости до 64 Гб/сек и 32K для кэша данных (L1 D-cache). Кэш третьего уровня не поддерживается.
Архитектура PowerPC G5 довольно сложна (смотри Приложение 1). Отдельно стоит отметить, что на борту находятся два независимых сопроцессора для вычислений с плавающей точкой с двойной точностью, два модуля для работы с числами с фиксированной запятой, два блока загрузки/выгрузки и один векторный блок. Также имеется модуль Velocity Engine (оптимизированный, по сравнению с PowerPC G4) с суперскалярным ядром, которое может одновременно обрабатывать до 215 команд. Этот модуль использует двухконвейерную 128-битную технологию обработки данных (аналогичная технология используется в научных суперкомпьютерах IBM). Все эти разработки основаны на опыте предыдущих поколений процессоров PowerPC. Итого G5 содержит свыше 12 отдельных функциональных модулей, которые могут обрабатывать параллельно множество различных команд.
Применение 64-битной технологии позволяет использовать до 8 Гб (PC3200/400 МГц) основной памяти (в отличие от 4 Гб для 32-bit), что крайне важно для работы с 3d, обработки видео, научных исследований и прочих приложений, требующих огромной вычислительной мощности. Такой объем оперативки во много раз увеличивает скорость работы с большими объемами данных, так как пропускная способность оперативки неизмеримо выше, чем при чтении данных с винта. Изначально PowerPC G5 проектировался для работы как с 64-, так и с 32-битным кодом прог. Благодаря этому остается полная совместимость со старыми приложениями, и нет необходимости в замене прог на 64-битный вариант (или эмуляции 32-bit режима с уменьшением производительности). Версии Mac OS X, начиная с 10.2, специально оптимизированы для работы с PowerPC G5, благодаря этому возможно использование всей 64-битной мощности и поддержка 32-битных программ без потери в производительности.
Технологии MIPS процессоров от Silicon Graphics (SGI)
MIPS (Million Instructions Per Second) - суперскалярный RISC-процессор. Его особенностями являются многоступенчатый конвейер, а также большой объем кэш-памяти первого уровня, что позволяет выполнять ряд приложений, эмулируя обращения к вторичной кэш-памяти или оперативной памяти. Оба кэша являются частично-ассоциативными, имеют виртуальную индексацию. Доступ в кэш второго уровня происходит по 64-разрядной системной шине совместно с доступом к оперативной памяти. Для повышения пропускной способности при обращении в оперативную память доступ инициируется одновременно со сравнением тега кэша.
Немного об архитектуре
SGI добилась своей уникальности и высокой производительности главным образом за счет того, что реализовала уникальную графическую подсистему, которая использует аппаратную поддержку команд OpenGL и позволяет преобразовывать поступающий поток цифровых данных в графические и видеоформаты. Так как все-таки устроена графическая подсистема от SGI?