Оперативка

4. ИИЛ, или И2Л —интегральная инжекторная логика. Это разновидность ТТЛ, базовым элементом которой являются не биполярные транзисторы одного рода (pnp или npn), а горизонтально расположенного pnp транзистора и вертикально расположенного npn транзистора. Это позволяет создать высокую плотность элементов на БИС и СБИС. При этом потребляемая мощность равна 50 мкВт на элемент и время задержки сигнала – 10 нс.

5.

ЭСЛ —логические элементы с эмитерными связями. Эта логика также построена на биполярных транзисторах. Время задержки в них —0,5 —2 нс, потребляема мощность —25 —50 мВт.

6. Элементы на МДП (МОП) —транзисторах. Это схемы, в которых биполярные транзисторы заменены на полевые. Время задержки таких элементов составляет от 1 до 10 нс, потребляемая мощность — от 0,1 до 1,0 мВт

7. КМОП —логика (комплементарная логика.) В этой логике используются симметрично включенные n-МОП и p-МОП транзисторы. Потребляема мощность в статическом режиме —50 мкВт, задержка —10 —50 нс.

Как видно из этого обзора, логика на биполярных транзисторах самая быстрая, но одновременно самая дорогая и обладает высокой мощностью рассеяния . При прочих равных условиях логика на полевых транзисторах более медленная, но обладает меньшим электропотреблением и меньшей стоимостью.

1.2 Быстродействие и производительность памяти

Быстродействие памяти определяется временем выполнения операций записи и считывания данных. Основными параметрами любых элементов памяти являет­ся минимальное время доступа и длительность цикла обращения. Время досту­па (access time) определяется как задержка появления действительных данных на выходе памяти относительно начала цикла чтения. Длительность цикла опре­деляется как минимальный период следующих друг за другом обращений к па­мяти, причем циклы чтения и записи могут требовать различных затрат време­ни. В цикл обращения кроме активной фазы самого доступа входит и фаза вос­становления (возврата памяти к исходному состоянию), которая соизмерима по времени с активной фазой. Временные характеристики самих запоминающих элементов определяются их принципом действия и используемой технологией изготовления.

Производительность памяти можно характеризовать как скорость потока за­писываемых или считываемых данных и измерять в мегабайтах в секунду. Про­изводительность подсистемы памяти наравне с производительностью процессо­ра существенным образом определяет производительность компьютера. Выпол­няя определенный фрагмент программы, процессору придется, во-первых, загру­зить из памяти соответствующий программный код, а во-вторых, произвести тре­буемые обмены данными, и чем меньше времени потребуется подсистеме памя­ти на обеспечение этих операций, тем лучше.

Производительность памяти, как основной, так и кэша второго уровня, обычно характеризуют длительностью пакетных циклов чтения (Memory Burst Read Cycle). Пакетный режим обращения является основным для процессоров, использующих кэш (486 и выше); циклы чтения выполняются гораздо чаще, чем циклы записи (хотя бы потому, что процессору приходится все время считывать инструкции из памяти). Эта длительность выражается в числе тактов системной шины, требуемых для передачи очередной порции данных в пакете. Обозначение вида 5-3-3-3 для диаграммы пакетного цикла чтения соответствует пяти тактам на считывание первого элемента в цикле и трем тактам на считывание каждого из трех последующих элементов. Первое число характеризует латентность (latency) памяти — время ожидания данных, последующие — скорость передачи. При этом, конечно же, оговаривается и частота системной шины. По нынешним меркам хо­рошим результатом является цикл 5-1-1-1 для частоты шины 100 или 133 МГц. Однако для процессоров Pentium 4, у которых за каждый такт синхронизации си­стемной шины передается по четыре 64-битных слова данных, возможно, будет иной способ выражения производительности памяти.

Производительность подсистемы памяти зависит от типа и быстродействия применяемых запоминающих элементов, разрядности шины памяти и некото­рых «хитростей» архитектуры.

Разрядность шины памяти — это количество байт (или бит), с которыми опе­рация чтения или записи может быть выполнена одновременно. Разрядность ос­новной памяти обычно согласуется с разрядностью внешней шины процессора (1 байт - для 8088; 2 байта - для 8086, 80286, 3865Х; 4 байта - для 386DХ, 486; 8 байт — для Pentium и выше). Вполне очевидно, что при одинаковом быст­родействии микросхем или модулей памяти производительность блока с боль­шей разрядностью будет выше, чем у малоразрядного. Именно с целью повыше­ния производительности у 32-битных (по внутренним регистрам) процессоров Реntium и выше внешняя шина, связывающая процессор с памятью, имеет раз­рядность 64 бита. Желание производителей процессоров и системных плат сэко­номить на разрядности памяти всегда приводит к снижению производительнос­ти: компьютеры на процессорах с полноразрядной шиной (8086, 386DХ) более чем на 50 % обгоняют своих «младших братьев» (8088, 3865Х) при одинаковой тактовой частоте. Одно время выпускались чипсеты, работающие с 32-битной памятью даже для Pentium, но эффективность подобной экономии сомнительна.

Банком памяти называют комплект микросхем или модулей (а также их по­садочных мест — «кроваток» для микросхем, слотов для SIММ или DIMM), обес­печивающий требуемую для данной системы разрядность хранимых данных. Ра­ботоспособным может быть только полностью заполненный банк. Внутри одно­го банка практически всегда должны применяться одинаковые (по типу и объе­му) элементы памяти.

В компьютерах на 486-х процессорах банком является один SIMM-72 или чет­верка SIMM-30. В компьютерах на процессорах 5-6 (а для АМD и 7-го) поколе­ний банком может быть пара SIMM-72 или один модуль DIMM или RIММ (эти модули могут содержать и несколько банков). На платы с чипсетом i850 для процессора Pentium 4 требуется установка пар RIMM (чтобы обеспе­чить производительность памяти, достойную новой микроархитектуры).

Если устанавливаемый объем памяти набирается несколькими банками, по­является резерв повышения производительности за счет чередования банков (bank interleaving). Идея чередования заключается в том, что смежные блоки данных (разрядность такого блока данных соответствует разрядности банка) располага­ются поочередно в разных банках. Тогда при весьма вероятном последователь­ном обращении к данным банки будут работать поочередно, причем активная фаза обращения к одному банку может выполняться во время фазы восстанов­ления другого банка, то есть применительно к обоим банкам не будет простоя во время фазы восстановления. Частота передачи данных в системе с чередованием двух банков может быть удвоенной по отношению к максимальной частоте paботы отдельного банка. Для реализации чередования чипсет должен обеспечивать возможность перекоммутации адресных линий памяти в зависимости от установленного количества банков и иметь для них (банков) раздельные линии управляющих сигналов. Чем больше банков участвуют в чередовании, тем выше (теоретически) предельная производительность. Чаще всего используется чередование двух или трех банков (two way interleaving, three way interleaving). В чередовании может участвовать и большее число банков. Из разбиения на мелкие банки можно извлечь и другую выгоду. Поскольку современные процессоры; способны параллельно выставлять несколько запросов на транзакции с памятью, скрытые фазы обработки запросов, обусловленные необходимым временем доступа, относящихся к разным банкам, могут выполняться одновременно.


Страница: