Математические методы и языки программирования симплекс методРефераты >> Программирование и компьютеры >> Математические методы и языки программирования симплекс метод
Xj - выпуск продукции j-го вида в оптимальном плане.
Kr - Соотношение деталей в изделии.
Система ограничений:
1. Ресурсные ограничения:
n
å a i j * x j £ A i (i=1,2, ,m)
j=1
2. Реальность плана выпуска:
Xj ³ 0
3. Ограничение по комплектности:
Xk Kl (k=1,2,…,l); (r=1,2,….,p)
Xr Kp
Целевой функционал:
n
Fmax = å Xj
j=1
3. ВЫБОР МЕТОДА РЕАЛИЗАЦИИ МОДЕЛИ.
ОБОСНОВАНИЕ МЕТОДА
Симплекс метод - универсальный метод для решения линейной системы уравнений или неравенств и линейного функционала.
Для привидения системы ограничений неравенств к каноническому виду, необходимо в системе ограничений выделить единичный базис.
I. Ограничения вида «£»- ресурсные ограничения. Справа находится то что мы используем на производстве, слева - то что получаем. При таких ограничения вводят дополнительные переменные с коэффициентом «+1», образующие единичный базис. В целевую функцию эти переменные войдут с коэффициентом «0».
II. Ограничения вида «=». Часто бывает, что несмотря на то что ограничения имеют вид равенства, единичный базис не выделяется или трудно выделяется. В этом случае вводятся искусственные переменные для создания единичного базиса - Yi. В систему ограничений они входят с коэффициентом «1» , а в целевую функцию с коэффициентом «M», стремящимся к бесконечности (при Fmin - «+M», при Fmax - «-M»).
III. Ограничения вида «³» - Плановые ограничения. Дополнительные переменные (X), несущие определенный экономический смысл - перерасход ресурсов или перевыполнение плана, перепроизводство, добавляются с коэффициентом «-1», в целевую функцию - с коэффициентом «0». А искусственные переменные (Y) как в предыдущем случае.
Алгоритм симплекс метода.
(первая симплекс таблица)
Пусть система приведена к каноническому виду.
X1+ q1,m+1 Xm+1 + …. + q1,m+n Xm+n = h1
X2+ q1,m+1 Xm+1 + …. + q1,m+n Xm+n = h1
X3+ q1,m+1 Xm+1 + …. + q1,m+n Xm+n = h1
……………………………………………………………….
Xm+ qm,m+1 Xm+1 + …. + qm,m+n Xm+n =hm
В ней m базисных переменных, k свободных переменных. m+k=n - всего переменных.
Fmin= C1X1+ C2X2+ C3X3+ + CnXn
Все hi должны быть больше либо равны нулю, где i=1,2 .m. На первом шаге в качестве допустимого решения принимаем все Xj=0 (j=m+1,m+2, .,m+k). При этом все базисные переменные Xi=Hi.
Для дальнейших рассуждений вычислений будем пользоваться первой симплекс таблицей (таблица 3.1).
Таблица 3.1.
Симплекс таблица.
C |
Б | H | C1 | C2 | … | Cm |
Cm+1 | … | Cm+k |
| X1 | X2 | … | Xm | Xm+1 | … | Xm+k | ||
C1 C2 C3 : : Cm |
X1 X2 X3 : : Xm |
h1 h2 h3 : : hm | 1 0 0 : : 0 | 0 1 0 : : 0 | : : : : : : | 0 0 0 : : 0 | q1,m+1 q2,m+1 q3,m+1 : : qm,m+1 | : : : : : : | q1,m+k q2,m+k q3,m+k : : qm,m+k |
| F= | F0 | D1 | D2 | … | Dm | Dm+1 | … | Dm+k |