Повышение производительности компьютерных систем
Рефераты >> Программирование и компьютеры >> Повышение производительности компьютерных систем

Одно из перспективных решений.

Одним из путей повышения производительности процессоров является новейшая технология производства микросхем на основе медных проводников.

Собственно, о прорыве в Cu-технологии изготовления микрочипов компания IBM заявила еще в сентябре 1997 года. Но за прошедшие до того пять лет напряженных лабораторных исследований и испытаний недостатка в подобных постоянно повторяющихся заявлениях уже никто не испытывал. И вот только последовавшие за этим октябрьские и ноябрьские события в мире большой полупроводниковой промышленности дали понять, что Великая медная революция, похоже, свершилась, поскольку вышла из лабораторий и теперь широко внедряется в серийном оборудовании полупроводниковой промышленности.

О преимуществах двойной дамасской медной технологии:Damascus Complete Copper, название технологической линейки оборудования альянса Lam и Novellus (и примкнувшей к ним IPEC), - перед традиционной алюминиевой. Попутно нужно заметить, что названный дамасским процесс имеет довольно слабое касательство к металлургии булатной стали. Похожего между ними маловато, кроме, возможно, удачно найденного гетерогенного сочетания различных медных структур. Гомогенные пленки меди просто никак не вписывались в существующие технологические приемы. Ну и, естественно, очень похожа секретность, которой окружены технологические режимы и параметры получения той и другой "дамасской" структуры.

Лучшая (чем у алюминия) проводимость меди позволяет исключить до 200 технологических операций (этапов) в изготовлении чипа. Это сильно, если вспомнить, что еще лет десять назад чип изготавливался за 60 операций, сегодня же производство микропроцессора требует 800 и более этапов.

Работая на одной тактовой частоте, чипы с медными межсоединениями будут потреблять на 30% меньше энергии, чем "классические". Учитывая же двух-трехкратное сокращение линейных размеров, достигаемое с помощью меди, подобная экономия выразится в еще больших значениях. Здесь уместно представить себе легкий и негорячий палмтоп (или хэнд-хелд - как кому нравится) с процессором, равным по мощности сегодняшнему Pentium II, только на частотах порядка 1 ГГц, с кэшем первого уровня под 1-2 Гбайт, с флэш-памятью под 300-500 Мбайт и/или RAM-диском 1-2 Гбайт.

Обычно средние затраты на этап технологического процесса в полупроводниковой промышленности имеют тенденцию снижаться на 25-30% каждый год. Внедрение двойного дамасского процесса на уровне внутренней разводки сократит общие затраты на 30% разом, сохраняя общую тенденцию сокращаться и далее, из года в год.

Для уровня 0,13 мкм и менее задержки в медных проводниках вдвое меньше, чем они могли бы быть в подобных (гипотетических, по большей части) структурах Al-SiO2.

Кроме того, в алюминиевых тонких (ширина около 0,25 мкм) проводниках плотность тока уже такова, что происходит электромиграция алюминия, приводящая к отказам. Лучшая сопротивляемость этому эффекту, характерная для меди, позволяет достаточно легко преодолеть предел по ширине проводника. Теперь остаются ограничения типа слишком высокой диэлектрической проницаемости у SiO2 (между слоями металла лежит именно этот материал). С преодолением этого недостатка и внедрением более совершенной литографии медь будет применяться до пределов 0,13 мкм.

Два основных отличия двойного дамасского медного процесса изготовления межсоединений от традиционной алюминиевой технологии состоят в следующем.

Во-первых, операцией, определяющей минимальную ширину и шаг разводки в случае Al, является травление металла, а планаризация (выравнивание обрабатываемой поверхности чипа по горизонтали) каждого металлического уровня осуществляется на этапах заполнения промежутка и CMP (химико-механической планаризации) диэлектрика. В процессе же изготовления медной разводки этапом, определяющим минимальную ширину и шаг проводников, является не травление металла, а более простое травление диэлектрика. Задачу планаризации выполняют на этапах осаждения и CMP меди.

Во-вторых, двойной дамасский процесс обладает еще одним преимуществом как перед обычной дамасской технологией, так и субтрактивным процессом, применяемым в настоящее время для изготовления алюминиевой разводки, он позволяет примерно на треть сократить число технологических этапов.

Влияние архитектуры микропроцессоров на повышение производительности.

В тяжёлой ситуации оказались производители микропроцессоров в конце девяностых годов. Сколько ни увеличивали они производительность процессоров, потребностей пользователей удовлетворить не могли. А остановиться - означало умереть: перестав крутить педали, упасть с велосипеда.

Наращивать тактовую частоту день ото дня становилось все труднее. Тогда разработчики пошли другим путем: оптимизировали исполнительные цепи, чтобы большинство команд исполнялось всего за один такт микропроцессора, ввели новые инструкции и векторные операции (технологии MMX и 3Dnow!) .

Сегодня можно с уверенностью сказать, что RISC- и CISC-архитектуры исчерпали себя, достигнув сопоставимой производительности. Но программисты, словно не заметив этого, все еще продолжают "утяжелять" программное обеспечение: Windows 2000 будет построена на объектах COM и COM+. С точки зрения разработчиков это хорошо, ибо позволит писать более устойчивый и свободный от ошибок программный код, но с точки зрения микропроцессора один только вызов объекта COM+ распадается на тысячи команд и очень-очень много тактов.

Без дальнейшего роста вычислительных мощностей внедрение этих технологий в повседневную жизнь просто немыслимо! Поэтому уже сегодня появляются многопроцессорные системы, ориентированные на домашние и офисные компьютеры.

Узким местом микропроцессоров традиционных архитектур стала выборка и декодирование инструкций. Действительно, в одном кристалле нетрудно разместить несколько независимых функциональных устройств, но только одно из них сможет обрабатывать поток команд. Почему? Очень просто: исполнять следующую инструкцию можно, только полностью уверившись, что ей не потребуется результат работы предыдущей.

СУПЕРСКАЛЯРНАЯ АРХИТЕКТУРА

Выходит, что исполнять за один такт можно и более одной инструкции? Действительно, что нам мешает синхронно исполнять нечто вроде:

MOV AX,1234h ; Записать в регистр AX число 1234h

MOV CX,DX ; Записать в регистр CX значение регистра DX

Достаточно лишь, чтобы устройство выборки инструкций позволяло декодировать обе команды за один такт. Для RISC с их фиксированной длиной команд это вообще не составляло никакой проблемы (подробнее - в статье "RISC vs. CISC").

Сложный набор инструкций CISC доставил немало головной боли разработчикам, но все же, ценой инженерных озарений и сложных аппаратных решений, были построены микропроцессоры, которые успевали декодировать две и более распространенные инструкции за один такт.

Словом, построение подобных декодеров не было непреодолимой преградой. Трудность заключалась в том, что далеко не все команды можно выполнять параллельно. Например:


Страница: