Аппроксимация

6.2 Блок-схема и параметры реализованной процедуры.

r=1

r=k

Обращащение: isnu(k1,m,n,a,p1,q1,p2,q2). Используются модули typesm, mjim.

Параметры подпрограммы isnu:

Наименование

Обозначение

Число ограничений

m

Число переменных

n

Матрица задачи

a

Отслеживающие векторы

p1, q1, p2, q2

В итоге успешной работы алгоритма все нуль-уравнения будут исключены, и в отслеживающем векторе p1 это будет отмечено как -1, что даст возможность в дальнейшем соответствующие столбцы матрицы А при выборе разрешающего элемента не трогать. Если же алгоритм применить нельзя, то будет выдано сообщение (см. блок-схему), и работа программы закончится.

7.2 Листинг модуля, исходных данных и результатов машинного расчета.

unit isnum;

interface

uses typesm,mjim;

procedure isnu(var k1:k1t;m,n:integer; var a:at;

var p1,q1:vec1it; var p2,q2:vec2it);

implementation

procedure isnu;

var p:real;k,s,r,j,t:integer;

begin

for r:=1 to k do begin

if p2[r]<0 then p1[abs(p2[r])]:=-1;end;

p:=0;

for j:=1 to n do begin

if p1[j]>0 then begin

if abs(a[r,j])>p then begin p:=abs(a[r,j]);s:=j;end;

end;end;

if p=0 then begin writeln(fo,'Исключить r',r:6,'-ое нуль-уравнение нельзя');

close(fi);close(fo);halt end;

mji(m,n,a,r,s);

p2[r]:=p1[s];p1[s]:=-1;

t:=q2[r];q2[r]:=q1[s];q1[s]:=t;

end;

end.

Исходныйфайлsimp.dat:

12

Исключение нуль-уравнений

Моносов ЭОУС-1-2 преподаватель Марьямов А. Г.

12.05.98

2 2 0

5 3

-2 -1 1 -2

1 -1 0 -1

-1 -1 0 -2

0 1 0 2

2 1 0 4

4 4 0 0

1 2

Файл результатов simp.res:

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

КАФЕДРА ИНФОРМАТИКИ И ПРИКЛАДНОЙ МАТЕМАТИКИ

Лабораторная работа по информатике

Факультет ЭОУС, 2-ой семестр обучения

Решение задачи линейного программирования

Вариант 12

модуль: Исключение нуль-уравнений

Исполнил студент Моносов ЭОУС-1-2 преподаватель Марьямов А. Г.

Дата исполнения: 12.05.98

Управляющий вектор:

2 2 0

Число ограничений: 5

Число переменных: 3

Матрица задачи

Н-р Коэффициенты Св. члены

строки

1 -2.00000 -1.00000 1.00000 -2.00000

2 1.00000 -1.00000 0.00000 -1.00000

3 -1.00000 -1.00000 0.00000 -2.00000

4 0.00000 1.00000 0.00000 2.00000

5 2.00000 1.00000 0.00000 4.00000

6 4.00000 4.00000 0.00000 0.00000

Вектор номеров свободных переменных:

1 2

Вектор решения прямой задачи:

1.00000 2.00000 3.00000

Значение целевой функции прямой задачи= 12.00000

Вектор решения двойственной задачи:

0.00000 4.00000 0.00000 8.00000 0.00000

Значение целевой функции двойственной задачи= 12.00000

8.2 Ручной расчет задачи линейного программирования.

Требуется максимизировать функцию

z=4x1+5x2

при ограничениях:

-2x1-x2+x3=-2

x1-x2£ -1

- x1 - x2 £ -2

0x1+ 1x2 £ 2

2x1 + 1x2 £ 4

x3 ³ 0

Коэфициенты ограничений, записанных в таком виде, переписываются со своими знаками, в последней строке таблицы записываются коэффициенты целевой функции с противоположными знаками. Сперва следует исключить свободные переменные, перекинув их на бок таблицы:

 

-x1

-x2

-x3

1

0=

-2

-1

1

-2

y2=

1

-1

0

-1

y3=

-1

-1

0

-2

y4=

0

1

0

2

y5=

2

1

0

4

z=

-4

-4

0

0

 

-x1

-y4

-x3

1

0=

-2

1

1

0

y2=

1

1

0

1

y3=

-1

1

0

0

*x2=

0

1

0

2

y5=

2

-1

0

2

z=

-4

4

0

8


Страница: