Использование табличного симплекс-метода для решения задач линейного программирования для оптимизации экономических задач
Рефераты >> Программирование и компьютеры >> Использование табличного симплекс-метода для решения задач линейного программирования для оптимизации экономических задач

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. КРАТКИЙ ОБЗОР АЛГОРИТМОВ РЕШЕНИЯ ЗАДАЧ

ДАННОГО ТИПА

1.1 Математическое программирование

1.2 Табличный симплекс - метод

1.3 Метод искусственного базиса

1.4 Модифицированный симплекс - метод

2. СОДЕРЖАТЕЛЬНАЯ ПОСТАНОВКА ЗАДАЧИ

3. РАЗРАБОТКА И ОПИСАНИЕ АЛГОРИТМА РЕШЕНИЯ

ЗАДАЧИ

3.1 Построение математической модели задачи

3.2 Решение задачи вручную

4. АНАЛИЗ МОДЕЛИ НА ЧУВСТВИТЕЛЬНОСТЬ .

4.1 Построение двойственной задачи и её численное

решение

4.2 Определение статуса ресурсов .

4.3 Определение значимости ресурсов .

4.4 Определение допустимого интервала изменения запаса

ресурсов

4.5 Исследование зависимости оптимального решения от

изменений запасов ресурсов

5. ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ПОЛУЧЕННЫХ

РЕЗУЛЬТАТОВ

6. ВЫВОДЫ И РЕКОМЕНДАЦИИ ПО ПРАКТИЧЕСКОМУ

ИСПОЛЬЗОВАНИЮ

ПРИЛОЖЕНИЕ

ЛИТЕРАТУРА

ВВЕДЕНИЕ

Цель данного курсового проекта - составить план производства требуемых изделий, обеспечивающий максимальную прибыль от их реализации, свести данную задачу к задаче линейного программирования, решить её симплекс - методом и составить программу для решения задачи этим методом на ЭВМ.

1. КРАТКИЙ ОБЗОР АЛГОРИТМОВ РЕШЕНИЯ ЗАДАЧ

ДАННОГО ТИПА

1.1 Математическое программирование

Математическое программирование занимается изучение экстремальных задач и поиском методов их решения. Задачи математического программирования формулируются следующим образом : найти экстремум некоторой функции многих переменных f ( x1, x2, . , xn ) при ограничениях gi ( x1, x2, . , xn ) * bi , где gi - функция, описывающая ограничения, * - один из следующих знаков £ , = , ³ , а bi - действительное число, i = 1, . , m. f называется функцией цели ( целевая функция ).

Линейное программирование - это раздел математического программирования, в котором рассматриваются методы решения экстремальных задач с линейным функционалом и линейными ограничениями, которым должны удовлетворять искомые переменные.

Задачу линейного программирования можно сформулировать так . Найти max

при условии : a11 x1 + a12 x2 + . . . + a1n xn £ b1 ;

a21 x1 + a22 x2 + . . . + a2n xn £ b2 ;

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1 x1 + am2 x2 + . . . + amn xn £ bm ;

x1 ³ 0, x2 ³ 0, . . . , xn ³ 0 .

Эти ограничения называются условиями неотрицательности. Если все ограничения заданы в виде строгих равенств, то данная форма называется канонической.

В матричной форме задачу линейного программировани записывают следующим образом. Найти max cT x

при условии

A x £ b ;

x ³ 0 ,

где А - матрица ограничений размером ( m´n), b(m´1) - вектор-столбец свободных членов, x(n ´ 1) - вектор переменных, сТ = [c1, c2, . , cn ] - вектор-строка коэффициентов целевой функции.

Решение х0 называется оптимальным, если для него выполняется условие сТ х0 ³ сТ х , для всех х Î R(x).

Поскольку min f(x) эквивалентен max [ - f(x) ] , то задачу линейного программирования всегда можно свести к эквивалентной задаче максимизации.

Для решения задач данного типа применяются методы:

1) графический;

2) табличный ( прямой, простой ) симплекс - метод;

3) метод искусственного базиса;

4) модифицированный симплекс - метод;

5) двойственный симплекс - метод.

1.2 Табличный симплекс - метод

Для его применения необходимо, чтобы знаки в ограничениях были вида “ меньше либо равно ”, а компоненты вектора b - положительны.

Алгоритм решения сводится к следующему :

1. Приведение системы ограничений к каноническому виду путём введения дополнительных переменных для приведения неравенств к равенствам.

2. Если в исходной системе ограничений присутствовали знаки “ равно ”

или “ больше либо равно ”, то в указанные ограничения добавляются

искусственные переменные, которые так же вводятся и в целевую функцию со знаками, определяемыми типом оптимума.

3. Формируется симплекс-таблица.

4. Рассчитываются симплекс-разности.

5. Принимается решение об окончании либо продолжении счёта.

6. При необходимости выполняются итерации.

7. На каждой итерации определяется вектор, вводимый в базис, и вектор, выводимый из базиса. Таблица пересчитывается по методу Жордана-Гаусса или каким-нибудь другим способом.

1.3 Метод искусственного базиса

Данный метод решения применяется при наличии в ограничении знаков “ равно ”, “ больше либо равно ”, “ меньше либо равно ” и является модификацией табличного метода. Решение системы производится путём ввода искусственных переменных со знаком, зависящим от типа оптимума, т.е. для исключения из базиса этих переменных последние вводятся в целевую функцию с большими отрицательными коэффициентами m , а в задачи минимизации - с положительными m . Таким образом из исходной получается новая m - задача.

Если в оптимальном решении m - задачи нет искусственных переменных, это решение есть оптимальное решение исходной задачи. Если же в оптимальном решении m - задачи хоть одна из искусственных переменных будет отлична от нуля, то система ограничений исходной задачи несовместна и исходная задача неразрешима.

1.4 Модифицированный симплекс - метод

В основу данной разновидности симплекс-метода положены такие особен -

ности линейной алгебры , которые позволяют в ходе решения задачи работать с частью матрицы ограничений. Иногда метод называют методом обратной матрицы.

В процессе работы алгоритма происходит спонтанное обращение матрицы ограничений по частям, соответствующим текущим базисным векторам. Указанная способность делает весьма привлекательной машинную реализацию вычислений вследствие экономии памяти под промежуточные переменные и значительного сокращения времени счёта. Хорош для ситуаций, когда число переменных n значительно превышает число ограничений m.

В целом, метод отражает традиционные черты общего подхода к решению задач линейного программирования, включающего в себя канонизацию условий задачи, расчёт симплекс-разностей, проверку условий оптимальности, принятие решений о коррекции базиса и исключение Жордана-Гаусса.

Особенности заключаются в наличии двух таблиц - основной и вспомагательной, порядке их заполнения и некоторой специфичности расчётных формул.

2. СОДЕРЖАТЕЛЬНАЯ ПОСТАНОВКА ЗАДАЧИ

Для производства двух видов изделий А и В используется три типа технологического оборудования. На производство единицы изделия А идёт времени, часов : оборудованием 1-го типа - а1 , оборудованием 2-го типа - а2 , оборудованием 3-го типа - а3 . На производство единицы изделия В идёт времени, часов : оборудованием 1-го типа - b1 , оборудованием 2-го типа - b2 ,, оборудованием 3-го типа - b3 .

На изготовление всех изделий администрация предприятия может предоставить оборудование 1-го типа не более, чем на t1 , оборудование 2-го типа не более, чем на t2 , оборудование 3-го типа не более, чем на t3 часов.


Страница: