Расширение локальных сетейРефераты >> Программирование и компьютеры >> Расширение локальных сетей
В большинстве других коммутаторов используется буферизованная коммутация. Этот метод предполагает наличие буфера. Пакет принимается в эту память, и его конечный порт назначения определяется микропроцессором и встроенными программами по таблице адресов.
Но следует отметить, что коммутатор Ethernet хорош только в качестве временного решения, поскольку число его портов ограничено.
Коммутатор EthernetBayStack 301
Коммутатор BayStack 301 располагает 22 портами 10Base-T и 2 портами10Base-T/100Base-ÒÕ и
- поддерживает максимум 10,240 МАС-адресов с быстрой памятью (Content Addressable Memory - CAM) на 1,024 адреса;
- коммутация фреймов осуществляется по принципу Store-and-Forward для минимизации использования полосы пропускания сети;
- максимальная пропускная способность коммутатора - 250.000 пакетов в секунду (pps) при пересчете на пакеты Ethernet минимальной длины;
- производительность по пересылке пакетов на порт для 10Base-T - 14 880 pps и 145 000 pps äëÿ 100Base-TX;
- поддерживает до 24 виртуальных сетей (VLAN) на коммутатор или одну VLAN на порт;
- есть возможность «зеркалирования» портов, что крайне важно при анализе коммутируемого трафика внешним RMON-àíàëèçàòîðîì (RMON probe);
- на передней панели коммутатора выполнен светодиодный индикатор, отображающий состояние коммутатора в реальном времени;
- BootP и TFTP поддерживают централизованное назначение параметров загрузки и удаленное обновление системного программного обеспечения коммутатора;
- конфигурационный порт позволяет редактировать конфигурацию устройства с помощью терминала или через модем;
- программа SpeedView Lite обеспечивает улучшенное SNMP-óïðàâëåíèå устройством;
- поддержка сетевого управления программой Optivity начинается с версий Enterprise 7.1 и Campus 6.1;
- коммутатор может устанавливаться в стандартную 19-дюймовую стойку, занимая при этом минимум стоечного пространства. Коммутатор BayStack 301 выполняет коммутацию на втором уровне модели OSL Благодаря идентичности форматов кадров 10Base-T и 100Base-TX не требуется никакой трансляции пакетов между портами, что определяет низкую латентность (внутреннюю задержку) данного устройства.
Одной из ключевых функций коммутатора сегментов Ethernet является сведение трафика сегментов в сетевой центр. Из-за различий в необходимой полосе пропускания приложений и постоянном изменении полосы пропускания каналов подключения настольных систем ключевым свойством коммутатора является гибкость. Ее обеспечивает модульный коммутатор BayStack 28200.
Модульный коммутатор BayStack 28200
Располагая 4 посадочными местами для включения модулей, модульный коммутатор позволяет наращивать количество сегментов в соответствии с устанавливаемыми в него модулями (модули 2 х 100Base-TX, 2 х 100Base-FX, 8 x 10Base-T, 4 x 10Base-FL могут устанавливаться в шасси в любом сочетании). При этом порты коммутатора могут работать как в режиме «Half-duplex», так и в режиме «Full-duplex». Специальный модуль позволяет объединять до 7 коммутаторов в стек, обеспечивая тем самым очень хорошую масштабируемость решений на базе 28200. Кроме того, для подключения к оптическим магистралям FDDI в коммутатор может быть установлен модуль FDDI двойного размера, что позволяет врезать в магистрали FDDI традиционный Ethernet.
Беспроводные ЛВС
Чтобы организовать беспроводную ЛВС необходимы два устройства: беспроводный адаптер клиента и узел доступа.
Термин "беспроводная ЛВС" несколько неточен, поскольку в большинстве случаев беспроводные ЛВС не заменяют собой проводных сетей. В действительности это просто беспроводные расширения проводных ЛВС. Для этого необходима вторая составная часть беспроводной ЛВС - узел доступа. Узел доступа представляет собой стационарное устройство, соединяемое с проводной ЛВС. Для связи беспроводных клиентов с проводной ЛВС через узел доступа служит антенна.
Беспроводные мосты также находят все большее применение в качестве замены выделенных каналов связи между сетями. Они обеспечивают скорости передачи информации до 2 Мбит/с - выше, чем 1,544-Мбит/с стандарт для региональных сетей T1, - при расстояниях до 25 миль (40,2 км).
Беспроводные ЛВС имеют значительно меньшую ширину полосы пропускания, чем проводные, и поэтому не стоит рассматривать их как альтернативу проводным ЛВС. Пропускная способность от 1 до 2 Мбит/с, которую обещают обеспечить многие изготовители, несопоставима с 10- и 100-Мбит/с скоростями сегодняшних проводных ЛВС. Более того, возможность возникновения помех от другого электрооборудования ограничивает дальность действия и пропускную способность беспроводной аппаратуры. в большей степени, чем показатели производительности, важна надежность функционирования изделия в условиях реального офиса, где могут встречаться разные уровни помех и эксплуатационных нагрузок.
Три разновидности беспроводных технологий
В беспроводных ЛВС используются три различные технологии передачи информации - с расширением спектра радиосигнала путем скачкообразной перестройки частоты (FHSS, Frequency-Hopping Spread-Spectrum), с расширением спектра радиосигнала по принципу прямой последовательности (DSSS, Direct Sequencing Spread-Spectrum) и инфракрасная. FHSS и DSSS реализуют метод расширения спектра радиосигнала, передаваемого в полосах электромагнитного спектра, выделенных для промышленных, научных и медицинских (ISM) применений. ISM-диапазон включает в себя полосы частот 902-928 МГц и 2,4-2,484 ГГц. Инфракрасные устройства работают в диапазоне частот между видимой частью электромагнитного спектра и радиоволнами с минимальной длины. Существуют две разновидности ИК-технологии: с испусканием светового пучка по линии прямой видимости, когда он фокусируется в тонкий луч, и диффузная, с диаграммой излучения, близкой к сферической.
В технологии FHSS используется метод перескока рабочей частоты передаваемого сигнала между несколькими заданными частотами с определенной скоростью и в определенной последовательности, что позволяет повысить помехозащищенность. Устройства со скачкообразной перестройкой частоты отличаются меньшими габаритами и дешевле в изготовлении. Продукты FHSS потребляют меньшую мощность, чем DSSS-изделия. Все устройства FHSS позволяют также размещать несколько узлов доступа в одной зоне, предоставляя в распоряжение пользователей более широкую полосу пропускания.
Технология DSSS предусматривает разбиение данных на небольшие блоки, называемые "чипами" (chips) и использует радиопередатчик для распределения "чипов" по фиксированной полосе частотного диапазона. Изделия DSSS более дороги в производстве, чем устройства FHSS, и потребляют большую мощность (1 Вт против 100 мВт). Однако во всех FHSS- и DSSS-продуктах, реализована та или иная разновидность режима энергосбережения, благодаря чему батареи радиопередатчиков эксплуатируются в щадящем режиме.