Контроль динамических параметров ЦАП
Рефераты >> Программирование и компьютеры >> Контроль динамических параметров ЦАП

Переходный процесс исследуют пу­тем стробирования компараторов, начиная с момента времени ti, заведомо превышающего время установле­ния, и перемещения стробирующего импульса по времен­ной оси к началу переходного процесса, т. е. справа на­лево до момента срабатывания одного из компараторов при отклонении контролируемого сигнала от установив­шегося значения более чем на (± 1/2) Δ.

Рассмотрим формирование и перемещение стробирующего импульса. Передний фронт импульса генератора Г, совпадающий с началом переходного процесса, осуще­ствляет запуск генератора пилообразного напряжения ГПН, возрастающий сигнал которого (рисунок 6б) поступает на один из входов дискриминатора уровней Д. В момент превышения пилообразным сигналом значения, поступающего на дискриминатор Д с формировате­ля порогового напряжения ФПН, дискриминатор сраба­тывает и с помощью ГСИ формирует стробирующий им­пульс.

Крутизну выходного сигнала ГПН и значение на­чального напряжения ФПН выбирают таким образом, чтобы первый стробирующий импульс был расположен на участке заведомо установившегося переходного процесса. Поэтому амплитуда напряжения исследуемого сиг­нала, поступающего на компараторы КН1 и КН2 в момент стробирующего импульса, находится в зоне (±1/2)Δ и компараторы не срабатывают. При этом счетчик импульсов Cч1 обнулен, а триггер T1 находится в исходном состоянии и обеспечивает прохождение импульсов с выхода счетчика Сч2 через схему запрета СЗ на формирователь порогового напряжения ФПН. Стробирующие импульсы с частотой повторения переходного процесса (с частотой генератора Г) заполняют предварительно обнуленный счетчик Сч2. При поступлении n-го импульса происходит переполнение этого счетчика. Импульс переполнения через схему запрета СЗ поступает на ФПН, уменьшая пороговое напряжение дискриминатора на ΔU. При крутизне 5 выходного напряжения ГПН это вызывает перемещение момента срабатывания дискриминатора (tд1, tд2 и т. д.), а следовательно, и момента формирова­ния стробирующего импульса к началу переходного про­цесса на величину:

δt = tд1 – tд2 = ΔU/S (1)

После обнуления счетчика Сч2 исследуют характеристику в новой точке переходного процесса. Если и в этой точке переходный процесс находится в зоне допуска, то по окончании п повторений переходных процессов вновь происходит переполнение счетчика Сч2 и перемещение стробирующего импульса по временной оси на δt к началу переходного процесса. Перемещение будет происхо­дить до тех пор, пока переходный процесс не приблизится к границе зоны допуска (положительному или отрица­тельному значению). При этом в зависимости от полярности отклонения исследуемого сигнала от установившегося значения начинает срабатывать один из компарато­ров KH1или КН2, выходные импульсы которых поступают на счетчик Сч1.

Если срабатывание компараторов неустойчивое, нерегулярное и за n повторений переход­ных процессов число срабатываний не превышает n/2 (что возможно при воздействии на компараторы KH1, КН2 различных помех, накладываемых на исследуемый сигнал и особенно ощутимых с приближением переход­ного процесса к допустимым значениям), то переполнения счетчика Сч1 не происходит и импульс переполнения счетчика Сч2 по окончании п повторений переходного про­цесса обнуляет счетчик Сч1 и вновь перемещает стробирующий импульс на δt, обеспечивая устойчивое срабатывание одного из компараторов. Это является признаком достижения переходным процессом границы зоны допустимых значений установившегося выходного напряжения ЦАП. В этом случае число срабатываний компара­торов KH1 или KH2 до окончания очередного цикла из n повторений переходного процесса превышает n/2, что приводит к переполнению счетчика Cч1, выходной импульс которого воздействует на триггер Т1, запрещая с помощью СЗ прохождение импульса переполнения счетчика Сч2 на ФПН. По окончании цикла импульс переполнения счетчика Сч2, обнуляя счетчик Сч1, не проходит на ФПН, что сохраняет неизменным уровень срабатывания дискриминатора Д, а значит, и расположение стробирующего импульса на временной оси. Перед началом очередного цикла сканирования переходного процесса устройством управления УУ происходит обнуление счётчика Сч2 и нормализация триггера Т1. При периодическом повторении циклов сканирования устойчивое срабатывание компараторов KH1 или КН2 обеспечивает неизменное положение стробирующего импульса на временной оси, момент появления которого и является моментом окончания переходного процесса исследуемого сигнала.

Поскольку моменты запуска и нормализации триггера Т2 определяются соответственно фронтом импульсов генератора Г, совпадающим с началом переходного процесса, и стробирующим импульсом, периодическое появление которого совпадает с моментом достижения переходным процессом установившегося значения, то длительность повторяющихся с частотой генератора выходных импульсов триггера Т2 в конце измерительного цикла равна дли­тельности переходного процесса исследуемого сигнала (рисунок 6е). Длительность выходных импульсов триггера Т2 с помощью преобразователя средних значений ПСЗ преобразуется в пропорциональное напряжение постоянного тока, фиксируемое, по окончании измерительного процесса отсчетно-регистрирующим устройством ОРУ. Поскольку частота генератора фиксирована, При постоянстве амплитуды Umax импульсов триггера Т2 в качестве ПСЗ можно использовать преобразователь сред­него значения импульсного сигнала в пропорциональное напряжение постоянного тока Ucp. В этом случае его вы­ходное напряжение Uвых однозначно определяет длитель­ность преобразуемых импульсов, а следовательно, дли­тельность переходного процесса tycт, т. е.:

(2)

Время измерения tизм определяется выбранным чис­лом п измерений в каждой точке переходного процесса и дискретным значением δt:

(3)

Как следует из рассмотренной схемы, результирую­щая погрешность измерения времени установления tуст определяется в основном разрешающей способностью ΔUк стробируемых компараторов и ограниченностью полосы пропускания измерителя, приводящей к искажению переходного процесса. Относительная погрешность γ обусловленная величиной ΔUк, зависит в свою очередь от крутизны S исследуемого сигнала U(t) в точке пере­сечения с границей зоны допустимых значений:

(4)

Это соотношение показывает, что погрешность γ, обу­словленная разрешающей способностью компараторов, в значительной мере зависит от характера переходного процесса и возрастает с уменьшением производной иссле­дуемого сигнала в момент окончания переходного про­цесса.

Влияние полосы пропускания схемы измерения проявляется в ослаблении высокочастотных составляющих выходного сигнала ЦАП, что приводит к изменению дли­тельности временного интервала, соответствующего длительности переходного процесса, а следовательно, к появлению ошибки преобразования. При нахождении полосы пропускания измерителя необходимо учитывать максимально возможный спектр частот F анализируемого сигнала:


Страница: